题目大意:看完之后,觉得不肯能让我暴力,比较好想的就是初始化——每个点都求个最短路spfa,sum数组记录每个点到各个点的最短路之和,ans作为总和,之后一一删除边u-v,求关于u的最短路,如果dis[v]是无穷大——》输出INF,否则连通——》求出sum【u】——用一个新的变量num1记录不可覆盖,求出sumv==num2,输出+》ans - sum[u] - sum[v] + num1 + num2
也是回顾了一下链式前向星和spfa——queue最短路的求法
1·初始化开始点,入队
2.出队一个点(维护vis数组),扫描所有的以这个点为起点的边,连边
3.判断目标点是否在队伍中,不在队伍中入队
一直维护队列,vis数组,dis数组
/*
sum数组来存储以i为起点的最短路之和
ans表示i从1到n的所有sum[i]的和
摧毁道路u v后
1.uv是否还连通
2.求sum[u]
3.sum[v]
ans = ans - sum[u] - sum[v] + num1 + num2
*/
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <queue>
#define inf 99999999
using namespace std;
const int maxn = 110;
const int maxm = 3030;
typedef long long ll;
struct node{
int from,to,pre;
int cost;//之所以赋值cost是为了后面赋值为inf模拟删边
}e[maxm * 2];
int n,m,ans;//总和更新维护变量
int sum[maxn];//一个点到各个点的最短路和
int dis[maxn];//spfa求最短路——点i到开始点的当前最短路
int vis[maxn];//spfa求最短路——判断点i是否在队列中
int id[maxm],cnt;//链式前向星
int u[maxm],v[maxm];//存储数据
queue<int> q;
void init()
{
//一次输入仅仅初始化一次
memset(sum,0,sizeof(sum));
memset(id,-1,sizeof(id));
cnt = 0;
ans = 0;
}
void add(int u,int v)
{
e[cnt].from = u;
e[cnt].to = v;
e[cnt].cost = 1;
e[cnt].pre = id[u];
id[u] = cnt++;
}
int spfa(int s)
{
for(int i = 0;i <= n;i++)
{
dis[i] = inf;
}
memset(vis,0,sizeof(vis));
while(q.size())q.pop();
q.push(s);
dis[s] = 0;
vis[s] = 1;
while(q.size())
{
int now = q.front();
q.pop();
vis[now] = 0;
for(int i = id[now];~i;i = e[i].pre)
{
int to = e[i].to;
if(dis[to] > dis[now] + e[i].cost)
{
dis[to] = dis[now] + e[i].cost;
if(vis[to] == 0)
{
vis[to] = 1;
q.push(to);
}
}
}
}
int res = 0;
for(int i = 1;i <= n;i++)
res += dis[i];
return res;
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
init();
for(int i = 1;i <= m;i++)
{
scanf("%d%d",&u[i],&v[i]);
add(u[i],v[i]);
add(v[i],u[i]);
}
for(int i = 1;i <= n;i++)
{
sum[i] = spfa(i);
ans += sum[i];
}
for(int i = 1;i <= m;i++)
{
e[i*2-1].cost = inf;
e[i*2-2].cost = inf;
int num1 = spfa(u[i]);
if(dis[v[i]] >= inf)
printf("INF\n");
else
{
int num2 = spfa(v[i]);
printf("%d\n",ans + num1 + num2 - sum[u[i]] - sum[v[i]]);
}
e[i*2-1].cost = 1;
e[i*2-2].cost = 1;
}
}
return 0;
}