前文(初识滴滴交易策略之一:交易市场)整体介绍了交易市场的定义、特点、技术特点和技术领域。在交易市场中,市场交易撮合——通常称之为“派单”——无疑是最重要的环节,以下将介绍滴滴交易市场中的司乘匹配技术。
对滴滴来说,司乘匹配所解决的最常见问题就是:“当乘客发出网约车订单时,应该将这些订单分配给哪些在线司机?”
这个问题看似简单,很多人脑海中立即想到的是“只需要找到最近的司机就行了”。的确,“就近派单”是滴滴派单的核心原则,直观代表了司机和乘客的主要利益。通过就近派单,绝大多数的订单将分配给距离最近的司机,实现较好的司乘体验。
当然,单个用户的最优并非保证所有司乘的体验。平台不能忽略同时出现的众多订单之间的更好协调方式,也不能忽略未来新的订单和空闲司机,甚至还需要考虑邻近区域和全城的供给和需求。
为实现所有司机和所有乘客的最优体验,在“就近派单”的核心原则之上,平台加以考虑时间、体验、服务、未来价值等诸多因素,从而实现更加完善的全城分单匹配结果。
这就是为什么这个问题依然非常复杂的原因,接下来的文章将全面展开讨论该问题。
本篇文章分为:
1.交易市场中的核心匹配问题是什么?
1) 双边匹配技术问题
2.滴滴业务场景的部分匹配技术
1)静态双边匹配
2)动态双边匹配和司乘价值
3)路径订单规划
4)排队体验与资源分配
5)仿真与数字孪生
3.总结
1. 交易市场中的核心匹配问题是什么?
让我们把眼光聚焦在局部交易市场的司机和乘客匹配这一核心问题上,该问题作为双边匹配和空间众包方向的学术问题,受到了学术界和工业界的广泛关注。
在滴滴的众多业务之中,存在大量匹配问题,并涉及到各匹配技术领域,例如:
1. 快车、出租车等业务中,涉及单乘客-单司机的双边匹配;
2. 特惠、出租车等业务中,涉及到半指派方式播单,构成单乘客-多司机(可重叠)的双边匹配;
3. 拼车、顺路单等合乘业务中,涉及多乘客-单路途-单司机的多边匹配;
4. 货运等业务中,涉及抢单、派单模式结合的双边匹配方式;
5. 两轮车业务中,涉及乘客-停放站点-车辆的匹配,涉及运维车辆-任务工单的匹配;
6. 国际外卖业务中,涉及订单-骑手-商家的多边匹配,带时间窗口约束;
7. 在部分业务中涉及动态博弈匹配问题。
本文限于篇幅问题,重点介绍最基本的单乘客-单司机的双边匹配问题。
在这个简化问题中:地图上不断有乘客发出新的订单,也存在着等候订单的司机们,派单系统了解他们的位置信息和订单起终点信息,希望将一位乘客分配给一辆空闲网约车,从而完成打车行程。
让我们从最简单的开始,当区域内只有一位乘客开始呼叫,而区域内也只有一名空闲司机,则显然会给该乘客和该司机进行匹配:
复杂一些,当一位乘客开始呼叫,而区域内有多名司机时,则应该为该乘客寻找最优的司机,比如离其最近的司机,或者服务最好的司机:
再复杂一些,当多位乘客都在呼叫,而区域内只有一位司机时,将为该司机匹配更加合适的乘客订单:
更复杂一些,当多位乘客在呼叫,多个司机在听单时,则选择空间成几何倍数增加,平台以公开透明的方式(就近派单原则等)进行最优的匹配:
现实环境之中为了保障司乘的体验,我们还会引入更多的更好的机制来帮助司乘。比如在体育赛事结束后大量乘客一起打车,这时候我们提供乘客的排队功能,“先来后到”,来帮助乘客更公平打车。同样的,在场站等特殊场景,也需要引入司机排队来实现司机师傅的公平接单体验。
双边匹配技术问题
运筹学中的双边匹配问题,是指如何在两个不相交的主体集合中依据各主体针对潜在匹配对象给出的偏好信息来确定合适的匹配结果,其在运筹、经济管理领域中存在的广泛应用,并在现实中的拍卖、交易、人员分配等场景得到实际使用。
2012年的诺贝尔经济学奖颁发给了Alvin E. Roth 和 Lloyd S. Shapley,以表彰他们在市场设计领域做出的杰出贡献。这项荣誉旨在肯定他们在稳定双边匹配理论及其在实际市场设计中的应用方面所作出的突出贡献。
双边匹配问题的著名起源案例是美国医学界的“毕业生配对”问题:每个医学毕业生心目中有心仪