基于短期替代变量的因果效应估计

文章介绍了滴滴MPT团队为解决长期效应估计的时效性和成本问题,提出的Laser模型。该模型通过短期替代变量估计长期因果效应,结合iVAE和IPW方法,处理未观测到的替代指数,提高长期效应估计的准确性。在离线评测中,Laser模型展示了优于传统模型的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇文章分为:

1.前言

2.模型方案

    2.1 替代指数背景

    2.2 替代指数的基本设定

    2.3 模型结构   

3.评估

4.总结与展望

1. 前言  

在网约车双边交易市场中,量化策略对平衡市场供需的影响起着重要的作用。对市场供需的影响分为两种情况:

  • 短期价值:当前策略对当前供需的即时干预影响。

  • 长期价值:当前策略对未来一段时间供需的长期干预影响。

从技术角度来说,我们可以将策略定义为处理变量(treatment),将其对市场供需的影响定义为处理效应(treatment effect),而建模处理变量和处理效应之间的效应估计模型被称为增益模型(uplift model)。

短期价值的效应估计可以通过常规的因果推断(causal inference)模型进行估计,比如 DML、grf 等模型,读者感兴趣可以参考我们之前发的文章:《连续因果森林模型的构造与实践》。而长期价值的效应估计往往需要长期实验数据支持,但长期实验存在两个问题:一方面缺乏时效性;另一方面成本昂贵。

针对长期实验面临的两个难题,滴滴MPT团队通过“滴滴盖亚科研合作计划”与在因果推断、因果学习领域深耕多年的广东工业大学计算机学院蔡瑞初教授开展合作,采用基于策略的短期结果对长期价值进行评估的技术思路,设计了基于短期替代变量的因果效应估计模型(Laser:LAtent SurrogatE Representation learning),提升长期效应估计的时效性,降低实验成本。    

dcf850718bc486abd88ad4eb30162dce.png

2. 模型方案 

2.1 替代指数背景

评估长期效应最理想的状态就是做长期实验,但出于成本等因素的约束,长期实验的目标很难达成,我们不得不使用短期数据来推断长期效应。因此我们希望借助短期结果变量作为替代指数(Surrogate index/Sind),继而得到长期结果变量和因果效应。因果图如下图所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值