迷宫c++

该问题描述了一个机器猫在矩形迷宫中寻找路径的问题,迷宫由空地和墙构成。机器猫从(1,1)开始,目标是到达(n,m)。给定迷宫地图后,使用深度优先搜索(DFS)算法来判断是否能从起点到达终点。如果可以,输出Yes,否则输出No。
摘要由CSDN通过智能技术生成

迷宫

题目描述

机器猫被困在一个矩形迷宫里。
迷宫可以视为一个 n × m n×m n×m 矩阵,每个位置要么是空地,要么是墙。机器猫只能从一个空地走到其上、下、左、右的空地。机器猫初始时位于 ( 1 , 1 ) (1,1) (1,1) 的位置,问能否走到 ( n , m ) (n,m) (n,m) 位置。

输入格式

第一行,两个正整数 n n n , m m m 。接下来 n n n 行,输入这个迷宫。每行输入一个长为 m m m 的字符串,# 表示墙,. 表示空地。

输出格式

仅一行,一个字符串。如果机器猫能走到 ( n , m ) (n,m) (n,m) ,则输出 Yes ;否则输出 No

样例 #1

样例输入 #1

3 5
.##.#
.#...
...#.

样例输出 #1

Yes

提示

对于 100 100 100% 的数据,保证 1≤n,m≤100,且 ( 1 , 1 ) (1,1) (1,1) ( n , m ) (n,m) (n,m) 均为空地。

#include <bits/stdc++.h>
using namespace std;

const int N = 110;

int n, m;
char g[N][N];
bool st[N][N];

// 判断当前位置(x, y)是否越界
bool check(int x, int y)
{
    return x >= 1 && x <= n && y >= 1 && y <= m;
}

// 搜索函数,返回值为能否到达
bool dfs(int x, int y)
{
    if (x == n && y == m) return true;  // 已经到达终点
    st[x][y] = true;  // 标记当前位置已经被走过
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};  // 四个方向的偏移量数组
    for (int i = 0; i < 4; ++i)
    {
        int nx = x + dx[i], ny = y + dy[i];  // 计算下一个位置的坐标
        if (check(nx, ny) && g[nx][ny] == '.' && !st[nx][ny])
            if (dfs(nx, ny)) return true;  // 如果下一个位置可以到达,则直接返回true
    }
    return false;  // 四个方向都不能到达终点,返回false
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; ++i) scanf("%s", g[i] + 1);
    if (dfs(1, 1)) puts("Yes");
    else puts("No");
    return 0;
}
#include<iostream> #include<windows.h> #include "conio.h" using namespace std; const int m=10 ; //迷宫行数 const int n=15 ; //迷宫列数 struct migong //结构体迷宫,,,pre为前驱,,,xy 为当前目标 { int x,y; int pre; }sq[500]; //最大成员500个,,迷宫大小,,,,, int mg[m+2][n+2]; //迷宫数组 外带边2个 ,, int zx[8+1],zy[8+1]; //迷宫方向数组 九宫格,,,他在中间,,,所以8个方向 void printlj(int rear) //打印迷宫路径 { int i; i=rear; //保存当前节点前驱,,为了在,,向前试探失败时,返回,,换一个方向继续 do { cout<<sq[i].x<<sq[i].y; //输出当前,,X,y值,,其实就是地址。。。。 i=sq[i].pre; // 保存这个节点的前驱 }while(i!=0); //i!=0表示通路 } void mglj() //球迷宫最短路径 { int i,j,x,y,v,front,rear,found; sq[1].x=sq[1].y=1;sq[1].pre=0; //从(1,1)开始搜索 。。。。左上角开始 found=0; //初始化。 front=rear=1; //初始化 mg[1][1]=-1; //开始节点就不需要来回遍历了,,,不设为-1,,一样可以算,,对于CPU来说无所谓 while((front<=rear)&&(!found)) //found初始化,,等于0 ,,,,这里是一个BUG,,,因为找到了,,他就退出了,,,很多时候不止一条路径 { x=sq[front].x; // y=sq[front].y; //引入临时变量x,y,,,保存当前,,,因为下面要进行,,,查找遍历,,,为了能够回到当前节点,,在无法试探的情况下 for(v=1;v<=8;v++) //循环扫描8个方向 {
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值