5.哈夫曼树
5.1概念
哈夫曼树: 哈夫曼(Huffman )树又称最优树,是一类带权路径长度最短的树,在实际中有广泛的用途。哈夫曼树的定义,涉及路径、路径长度、权等概念,下面先给出这些概念的定义,然后再介绍哈夫曼树。
(1) 路径: 从树中一个结点到另一个结点之间的分支构成这两个结点之间的路径。
(2) 路径长度: 路径上的分支数目称作路径长度。
(3) 树的路径长度: 从树根到每一结点的路径长度之和。
(4) 权: 赋予某个实体的一个量,是对实体的某个或某些属性的数值化描述。在数据结构中,实体有结点(元素)和边(关系)两大类,所以对应有结点权和边权。结点权或边权具体代表什么意义,由具体情况决定。如果在一棵树中的结点上带有权值,则对应的就有带权树等概念
(5) 结点的带权路径长度: 从该结点到树根之间的路径长度与结点上权的乘积。
(6) 树的带权路径长度: 树中所有叶子结点的带权路径长度之和,通常记作WPL。

(7) 哈夫曼树: 假设有m个权值{W1,W2…,Wm},可以构造一棵含n个叶子结点的二叉树,每个叶子结点的权为w;则其中带权路径长度WPL最小的二叉树称做最优二叉树或哈夫曼树。
(8) 哈夫曼树中权越大的叶子离根越近;具有相同带权结点的哈夫曼树不唯一。
例1:下面树的带权路径长度是多少?

最低0.47元/天 解锁文章
3094

被折叠的 条评论
为什么被折叠?



