构造哈夫曼树代码实现(C++)

本文详细介绍了哈夫曼树(最优二叉树)的构造过程,包括初始化和创建树两大步骤,并提供了完整的C++代码实现。通过动态申请内存,输入叶子节点的权值,然后通过选择权值最小的节点进行合并,最终构建出带权路径长度最小的二叉树。代码中包含了选择最小权值节点的函数和显示树状结构的辅助函数,便于理解和实现哈夫曼编码。
摘要由CSDN通过智能技术生成

哈夫曼树又称作最优二叉树,是带权路径长度最小的二叉树。

一、算法步骤:

构造哈夫曼树算法的实现可以分成两大部分。 

①初始化:首先动态申请2n个单元;然后循环2n-1次,从1号单元开始,依次将1至m所有单元中的双亲、左孩子、右孩子的下标都初始化为0;最后再循环n次,输人前n个单中叶子结点的权值。
②创建树:循环n-1次,通过n-1次的选择、删除与合并来创建哈夫曼树。选择是从当前森林中选择双亲为0且权值最小的两个树根结点s1和s2;删除是指将结点s1和s2的双亲改为非0;合并就是将s1和s2的权值和作为一个新结点的权值依次存人到数组的第n+1之后的单元中,同时记录这个新结点左孩子的下标为s1,右孩子的下标为s2。

二、完整代码:

#include <iostream>
using namespace std;

//哈夫曼的存储结构
typedef struct {
    int weight;
    int parent,lchild,rchild;
}HTNode, *HuffmamTree;

//选两个权值最小的结点
void Select(HuffmamTree &HT, int n, int &s1, int &s2){
    int min;
    for (int i = 1; i <= n; ++i) {
        if(HT[i].parent == 0){
            min = i;
            break;
        }
    }
    for (int j = 1; j <= n; ++j) {
        if(HT[j].parent == 0){
            if(HT[j].weight < HT[min].weight)
                min = j;
        }
    }
    s1 = min;
    for (int i = 1; i <= n; ++i) {
        if(HT[i].parent == 0 && i != s1){
            min = i;
            break;
        }
    }
    for (int j = 1; j <= n; ++j) {
        if(HT[j].parent == 0 && j != s1){
            if(HT[j].weight < HT[min].weight)
                min = j;
        }
    }
    s2 = min;
}

//输出哈夫曼树状态表
void Show(HuffmamTree HT, int m){
    cout<<"==============================="<<endl;
    for (int i = 1; i <= m; ++i) {
        cout<<i<<".   "<<HT[i].weight<<"   "<<HT[i].parent<<"   "<<HT[i].lchild<<"   "<<HT[i].rchild<<endl;
        cout<<"-------------------------"<<endl;
    }
}

//创建哈夫曼树
void CreateHuffmanTree(HuffmamTree &HT, int n){
    //初始化构造n个结点的哈夫曼树
    if(n <=1) return;
    int m = n*2-1;
    HT = new HTNode[m+1];
    for (int i = 0; i <= m; ++i) {
        HT[i].parent = 0;
        HT[i].lchild = 0;
        HT[i].rchild = 0;
        HT[i].weight = 0;
    }
    for (int j = 1; j <= n; ++j) {
        cout<<"请输入第"<<j<<"个结点的权值:";
        cin>>HT[j].weight;
    }

    //输出哈夫曼树初态表
    cout<<"HT的初态:"<<endl;
    Show(HT, m);

    //创建哈夫曼树
    int s1,s2;
    for (int i = n+1; i <= m; ++i) {
        Select(HT,i-1,s1,s2);  //从HT[k](1 <= k <= i-1)中获得两个权值最小的结点的位置
        HT[s1].parent = i;  //将s1 s2位置的结点的双亲域改为i
        HT[s2].parent = i;
        HT[i].lchild = s1;  //s1 s2分别作为结点i的左右子树
        HT[i].rchild = s2;
        HT[i].weight = HT[s1].weight + HT[s2].weight;  //i结点的权值等于左右子树权值之和
    }
    //输出哈夫曼树终态表
    cout<<"HT的终态:"<<endl;
    Show(HT, m);
}

int main() {
    HuffmamTree HT;
    int n;
    cout<<"请输入叶子节点个数:";
    cin>>n;
    CreateHuffmanTree(HT,n);
    return 0;
}

三、运行结果展示:

 

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值