哈夫曼树又称作最优二叉树,是带权路径长度最小的二叉树。
一、算法步骤:
构造哈夫曼树算法的实现可以分成两大部分。
①初始化:首先动态申请2n个单元;然后循环2n-1次,从1号单元开始,依次将1至m所有单元中的双亲、左孩子、右孩子的下标都初始化为0;最后再循环n次,输人前n个单中叶子结点的权值。
②创建树:循环n-1次,通过n-1次的选择、删除与合并来创建哈夫曼树。选择是从当前森林中选择双亲为0且权值最小的两个树根结点s1和s2;删除是指将结点s1和s2的双亲改为非0;合并就是将s1和s2的权值和作为一个新结点的权值依次存人到数组的第n+1之后的单元中,同时记录这个新结点左孩子的下标为s1,右孩子的下标为s2。
二、完整代码:
#include <iostream>
using namespace std;
//哈夫曼的存储结构
typedef struct {
int weight;
int parent,lchild,rchild;
}HTNode, *HuffmamTree;
//选两个权值最小的结点
void Select(HuffmamTree &HT, int n, int &s1, int &s2){
int min;
for (int i = 1; i <= n; ++i) {
if(HT[i].parent == 0){
min = i;
break;
}
}
for (int j = 1; j <= n; ++j) {
if(HT[j].parent == 0){
if(HT[j].weight < HT[min].weight)
min = j;
}
}
s1 = min;
for (int i = 1; i <= n; ++i) {
if(HT[i].parent == 0 && i != s1){
min = i;
break;
}
}
for (int j = 1; j <= n; ++j) {
if(HT[j].parent == 0 && j != s1){
if(HT[j].weight < HT[min].weight)
min = j;
}
}
s2 = min;
}
//输出哈夫曼树状态表
void Show(HuffmamTree HT, int m){
cout<<"==============================="<<endl;
for (int i = 1; i <= m; ++i) {
cout<<i<<". "<<HT[i].weight<<" "<<HT[i].parent<<" "<<HT[i].lchild<<" "<<HT[i].rchild<<endl;
cout<<"-------------------------"<<endl;
}
}
//创建哈夫曼树
void CreateHuffmanTree(HuffmamTree &HT, int n){
//初始化构造n个结点的哈夫曼树
if(n <=1) return;
int m = n*2-1;
HT = new HTNode[m+1];
for (int i = 0; i <= m; ++i) {
HT[i].parent = 0;
HT[i].lchild = 0;
HT[i].rchild = 0;
HT[i].weight = 0;
}
for (int j = 1; j <= n; ++j) {
cout<<"请输入第"<<j<<"个结点的权值:";
cin>>HT[j].weight;
}
//输出哈夫曼树初态表
cout<<"HT的初态:"<<endl;
Show(HT, m);
//创建哈夫曼树
int s1,s2;
for (int i = n+1; i <= m; ++i) {
Select(HT,i-1,s1,s2); //从HT[k](1 <= k <= i-1)中获得两个权值最小的结点的位置
HT[s1].parent = i; //将s1 s2位置的结点的双亲域改为i
HT[s2].parent = i;
HT[i].lchild = s1; //s1 s2分别作为结点i的左右子树
HT[i].rchild = s2;
HT[i].weight = HT[s1].weight + HT[s2].weight; //i结点的权值等于左右子树权值之和
}
//输出哈夫曼树终态表
cout<<"HT的终态:"<<endl;
Show(HT, m);
}
int main() {
HuffmamTree HT;
int n;
cout<<"请输入叶子节点个数:";
cin>>n;
CreateHuffmanTree(HT,n);
return 0;
}
三、运行结果展示: