2019年牛客多校第一场E题 ABBA DP

题目链接

传送门

思路

首先我们知道 ′ A ′ 'A' A在放了 n n n个位置里面是没有约束的, ′ B ′ 'B' B在放了 m m m个位置里面也是没有约束的,其他情况见下面情况讨论。
d p [ i ] [ j ] dp[i][j] dp[i][j]表示放了 i i i ′ A ′ 'A' A j j j ′ B ′ 'B' B的方案数,然后考虑转移到下一个状态:

  • 如果 i ≤ n i\leq n in,那么 ′ A ′ 'A' A可以随意放;
  • 如果 j ≤ m j\leq m jm,那么 ′ B ′ 'B' B可以随意放;
  • 如果 i > n i> n i>n,那么要放 ′ A ′ 'A' A需要放了 ′ A ′ 'A' A后多余的 ′ A ′ 'A' A前面要有 ′ B ′ 'B' B和它匹配,也就是说 n − i − 1 ≤ j n-i-1\leq j ni1j
  • 如果 j > m j>m j>m,那么要放 ′ B ′ 'B' B需要放了 ′ B ′ 'B' B后多余的 ′ B ′ 'B' B前面有 ′ A ′ 'A' A和它匹配,也就是说 n − j − 1 ≤ i n-j-1\leq i nj1i

代码实现如下

#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std;

typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL;

#define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("D://Code//in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0)

const double eps = 1e-8;
const int mod = 1e9 + 7;
const int maxn = 1e5 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL;

int n, m;
LL dp[2007][2007];

int main() {
    while(~scanf("%d%d", &n, &m)) {
        for(int i = 0; i <= n + m; ++i) {
            for(int j = 0; j <= n + m; ++j) {
                dp[i][j] = 0;
            }
        }
        dp[0][0] = 1;
        for(int i = 0; i <= n + m; ++i) {
            for(int j = 0; j <= n + m; ++j) {
                if(i < n + j) dp[i+1][j] = (dp[i+1][j] + dp[i][j]) % mod;
                if(j < m + i) dp[i][j+1] = (dp[i][j+1] + dp[i][j]) % mod;
            }
        }
        printf("%lld\n", dp[n+m][n+m]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值