汉诺塔问题
【问题描述】
设A、B、C是3个塔座。开始时,在塔座A上有一叠共n个圆盘,这些圆盘自下而上,由小到大地叠放在一起。各圆盘从小到大的编号为1,2,…,n。现要求将塔座A上的这一叠圆盘移动到塔座B上,并仍按同样顺序叠置。在移动圆盘时应遵守以下移动规则:
规则1:每次只能移动1个圆盘;
规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上;
规则3:在满足移动规则1~3的前提下,可将圆盘移至A、B、C中任一塔座上。
试设计一个算法,用最少的移动次数将塔座A上的n个圆盘移动到塔座B上,并仍按同样顺序叠置。
【解题思路】
1、如果只有一个圆盘的话,那我们只需要把这唯一的一个圆盘从A移动到B上。
2、如果有n个圆盘,那我们可以把问题规模缩小,看看如果只有n-1个圆盘的话怎么移动,想n-1个圆盘怎么移动时,可以考虑n-2个怎么移动…这样一直缩小问题规模直到缩小到n=1。这个思路可以运用递归来解决,n=1就是递归的边界。
3、要将A塔座上的圆盘全部移动到B塔座上,中间必定要有一步是原本A塔座上面的n-1个圆盘全部移动到了C塔座上,然后就可以将A塔座上的最后一个圆盘n移动到B塔座上,然后就可以再把C上的n-1个圆盘移动到B上。然后再考虑那n-1个是怎么从A移动到C的。
【解题代码】
#include<iostream>
using namespace std;
void Hannoi(int,char,char,char);
int main()
{
int n;
cin>>n;
Hannoi(n,'A','B','C');
return 0;
}
void Move(int i,char M,char N)
{ //打印:把第i层塔从M位置移动到N位置
cout<<i<<' '<<M<<' '<<N<<endl;
}
void Hannoi(int n,char W1,char W2,char W3)
{
if(n==1)
{//如果只有一个圆盘,则直接从A移动到B
Move(1,W1,W2);
return;
}
n--;
Hannoi(n,W1,W3,W2);//考虑A上面的n-1个圆盘是怎么从A移动到C的
Move(n+1,W1,W2);//第n个从A到B(此处的n+1就是n,前面做了n--)
Hannoi(n,W3,W2,W1);//考虑C上面的n-1个圆盘怎么从C移动到B上(此处的n就是n-1,前面做了n--)
}
【运行结果】