高等数学笔记-乐经良老师-第五章-积分(Ⅰ)-定积分与不定积分-第四节-不定积分

高等数学笔记-乐经良

第五章-积分(Ⅰ)-定积分与不定积分

第四节 不定积分

一、定义

  • 不定积分的定义
    • f ( x ) f(x) f(x) I I I 的全体原函数称为 f ( x ) f(x) f(x) I I I 的不定积分,记为 ∫ f ( x ) d x \int f(x) d x f(x)dx​ .​
  • 注意
    • F ( x ) F(x) F(x) f ( x ) f(x) f(x) 的一个原函数,则 ∫ f ( x ) d x = F ( x ) + C \int f(x) d x=F(x)+C f(x)dx=F(x)+C​ .

二、性质

  • ( ∫ f ( x ) d x ) ′ = f ( x ) \left(\int f(x) d x\right)^{\prime}=f(x) (f(x)dx)=f(x) d ( ∫ f ( x ) d x ) = f ( x ) d x d\left(\int f(x) d x\right)=f(x) d x d(f(x)dx)=f(x)dx
    ∫ f ′ ( x ) d x = f ( x ) + C \int f^{\prime}(x) d x=f(x)+C f(x)dx=f(x)+C ∫ d f ( x ) = f ( x ) + C \int d f(x)=f(x)+C df(x)=f(x)+C
  • 线性运算
    • f ( x ) , g ( x ) f(x), \mathrm{g}(x) f(x),g(x)​​ 有原函数, ∀ k ∈ R \forall k \in \mathbf{R} kR​​, 则 ∫ [ f ( x ) + g ( x ) ] d x = ∫ f ( x ) d x + ∫ g ( x ) d x \int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x [f(x)+g(x)]dx=f(x)dx+g(x)dx​ .
    • $ \int[k f(x)] d x=k \int f(x) d x$ .

三、积分表

  • 常数函数

    • ∫ 0 d x = C \int 0 d x=C 0dx=C
  • 幂函数

    • ∫ x α d x = 1 α + 1 x α + 1 ( α ≠ − 1 ) \int x^{\alpha} d x=\frac{1}{\alpha+1} x^{\alpha+1} \quad(\alpha \neq-1) xαdx=α+11xα+1(α=1)​​
    • ∫ φ α ( x ) d ( φ ( x ) ) = φ α + 1 ( x ) α + 1 + C \int \varphi^{\alpha}(x)d(\varphi(x))=\frac{\varphi^{\alpha+1}(x)}{\alpha+1}+C φα(x)d(φ(x))=α+1φα+1(x)+C
    • ∫ 1 x d x = ln ⁡ ∣ x ∣ + C \int \frac{1}{x} d x=\ln |x|+C x1dx=lnx+C​​
    • ∫ 1 x + a d x = ln ⁡ ∣ x + a ∣ + C \int \frac{1}{x+a} d x=\ln |x+a|+C x+a1dx=lnx+a+C​​​
    • ∫ x x 2 + a d x = 1 2 ln ⁡ ∣ x 2 + a ∣ + C \int \frac{x}{x^2+a}dx=\frac12 \ln|x^2+a|+C x2+axdx=21lnx2+a+C
    • ∫ 1 ( x + a ) k d x = { ln ⁡ ∣ x + a ∣ + C k = 1 ( x + a ) ( 1 − k ) 1 − k + C k ≠ 1 \int \frac{1}{(x+a)^k} d x=\begin{cases}\ln |x+a|+C & k=1 \\ \frac{(x+a)^{(1-k)}}{1-k}+C & k \neq 1\end{cases} (x+a)k1dx={lnx+a+C1k(x+a)(1k)+Ck=1k=1
  • 指数函数

    • ∫ a x d x = 1 ln ⁡ a a x + C \int a^{x} d x=\frac{1}{\ln a} a^{x}+C axdx=lna1ax+C
    • ∫ e x d x = e x + C \int e^{x} d x=e^{x}+C exdx=ex+C
  • 三角函数

    • ∫ sin ⁡ x d x = − cos ⁡ x + C \int \sin x d x=-\cos x+C sinxdx=cosx+C
    • ∫ cos ⁡ x d x = sin ⁡ x + C \int \cos x d x=\sin x+C cosxdx=sinx+C​​​​
    • ∫ tan ⁡ x d x = − l n ∣ cos ⁡ x ∣ + C \int \tan x d x=-ln|\cos x|+C tanxdx=lncosx+C
    • ∫ csc ⁡ x d x = ∫ 1 s i n x d x = ln ⁡ ∣ tan ⁡ x 2 ∣ + C \int \csc x d x=\int \frac{1}{sinx}d x=\ln|\tan\frac{x}{2}|+C cscxdx=sinx1dx=lntan2x+C
    • ∫ sec ⁡ x d x = ∫ 1 cos ⁡ x d x = ln ⁡ ∣ tan ⁡ ( x 2 + π 4 ) ∣ + C = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int \sec x d x=\int \frac{1}{\cos x}d x=\ln|\tan(\frac{x}{2}+\frac{\pi}{4})|+C=\ln|\sec x+\tan x|+C secxdx=cosx1dx=lntan(2x+4π)+C=lnsecx+tanx+C​​​
    • ∫ cot ⁡ x d x = ∫ 1 tan ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C \int \cot x d x=\int \frac{1}{\tan x}d x=\ln|\sin x|+C cotxdx=tanx1dx=lnsinx+C
    • ∫ sec ⁡ 2 x d x = ∫ 1 c o s 2 x d x = tan ⁡ x + C \int \sec ^{2} x d x=\int\frac{1}{cos^2x}dx=\tan x+C sec2xdx=cos2x1dx=tanx+C​​​​
    • ∫ csc ⁡ 2 x d x = ∫ 1 s i n 2 x d x = − 1 t a n x + C = − cot ⁡ x + C \int \csc ^{2} x d x=\int\frac{1}{sin^2x}dx=-\frac{1}{tan x}+C=-\cot x+C csc2xdx=sin2x1dx=tanx1+C=cotx+C
    • ∫ sec ⁡ x tan ⁡ x d x = ∫ s i n x c o s 2 x d x = 1 c o x + C = sec ⁡ x + C \int \sec x \tan x d x=\int\frac{sinx}{cos^2x}dx=\frac{1}{cox}+C=\sec x+C secxtanxdx=cos2xsinxdx=cox1+C=secx+C
    • ∫ csc ⁡ x cot ⁡ x d x = ∫ c o s x s i n 2 x d x = − 1 s i n x + C = − csc ⁡ x + C \int \csc x \cot x d x=\int\frac{cosx}{sin^2x}dx=-\frac{1}{sinx}+C=-\csc x+C cscxcotxdx=sin2xcosxdx=sinx1+C=cscx+C
  • 反三角函数

    • ∫ d x 1 − x 2 = arcsin ⁡ x + C \int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+C 1x2 dx=arcsinx+C​​​​
    • ∫ d x a 2 − x 2 = arcsin ⁡ x ∣ a ∣ + C \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{|a|}+C a2x2 dx=arcsinax+C
    • ∫ d x 1 + x 2 = arctan ⁡ x + C \int \frac{d x}{1+x^{2}}=\arctan x+C 1+x2dx=arctanx+C​​
    • ∫ d x a 2 + x 2 = 1 a arctan ⁡ x a + C \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C a2+x2dx=a1arctanax+C
  • 对数函数

    • ∫ d x x 2 − a 2 = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C \int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|+C x2a2dx=2a1ln x+axa +C

    • ∫ d x x 2 ± a 2 = ln ⁡ ∣ x 2 ± a 2 + x ∣ + C \int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\ln \left|\sqrt{x^{2} \pm a^{2}}+x\right|+C x2±a2 dx=ln x2±a2 +x +C​​​

      ∫ d x x 2 + a 2 = ln ⁡ ( x 2 ± a 2 + x ) + C \int \frac{d x}{\sqrt{x^{2} + a^{2}}}=\ln \left(\sqrt{x^{2} \pm a^{2}}+x\right)+C x2+a2 dx=ln(x2±a2 +x)+C

      ∫ d x x 2 − a 2 = ln ⁡ ∣ x 2 − a 2 + x ∣ + C \int \frac{d x}{\sqrt{x^{2} - a^{2}}}=\ln \left|\sqrt{x^{2} - a^{2}}+x\right|+C x2a2 dx=ln x2a2 +x +C

  • 其他复杂初等函数

    • ∫ a 2 − x 2 d x = x 2 a 2 − x 2 + a 2 2 arcsin ⁡ x ∣ a ∣ + C \int \sqrt{a^2-x^2}dx=\frac x2 \sqrt{a^2-x^2}+\frac{a^2}{2}\arcsin \frac{x}{|a|}+C a2x2 dx=2xa2x2 +2a2arcsinax+C
    • ∫ x x 2 + a d x = 1 2 ln ⁡ ∣ x 2 + a ∣ + C \int \frac{x}{x^2+a}dx=\frac 12 \ln|x^2+a|+C x2+axdx=21lnx2+a+C
    • ∫ x x 2 + a d x = x 2 + a + C \int \frac{x}{\sqrt{x^2+a}}dx=\sqrt{x^2+a}+C x2+a xdx=x2+a +C

四、不定积分的积分法

01 不定积分的换元法
(1) 不定积分的凑微分法(第一换元法)
  • 凑微分法
    • ∫ f ( x ) d x = F ( x ) + C , φ ( x ) \int f(x) d x=F(x)+C, \varphi(x) f(x)dx=F(x)+C,φ(x) 可导, 则 ∫ f ( φ ( x ) ) φ ′ ( x ) d x = F ( φ ( x ) ) + C \int f(\varphi(x)) \varphi^{\prime}(x) d x=F(\varphi(x))+C f(φ(x))φ(x)dx=F(φ(x))+C
  • 过程
    • ∫ f ( φ ( x ) ) φ ′ ( x ) d x ⇒ ∫ f ( φ ( x ) ) d φ ( x ) ⇒ F ( φ ( x ) ) + C \int f(\varphi(x)) \varphi^{\prime}(x) d x \Rightarrow \int f(\varphi(x)) d \varphi(x) \Rightarrow F(\varphi(x))+C f(φ(x))φ(x)dxf(φ(x))dφ(x)F(φ(x))+C
  • 注意
    • 观察哪部分可凑成 φ ′ d x = d φ \varphi^{\prime} d x=d \varphi φdx=dφ,而使得微分号前剩下的部分恰好是 φ \varphi φ 的可积表达式
  • 常用的凑微分
    • φ ′ ( x ) d x = d φ ( x ) \varphi'(x)dx=d\varphi(x) φ(x)dx=dφ(x)
    • ∫ f ( a x + b ) d x = 1 a ∫ f ( a x + b ) d ( a x + b ) \int f(ax+b)dx=\frac1a \int f(ax+b)d(ax+b) f(ax+b)dx=a1f(ax+b)d(ax+b)
    • 2 x d x = d x 2 2xdx=dx^2 2xdx=dx2
    • c o s x d x = d s i n x cosxdx=dsinx cosxdx=dsinx
    • s e c 2 x d x = 1 c o s 2 x d x = d t a n x sec^2xdx=\frac{1}{cos^2x}dx=dtanx sec2xdx=cos2x1dx=dtanx
(2) 不定积分的第二换元法
  • 第二换元法
    • ∫ f ( ψ ( t ) ) ψ ′ ( t ) d t = F ( t ) + C \int f(\psi(t)) \psi^{\prime}(t) d t=F(t)+C f(ψ(t))ψ(t)dt=F(t)+C,且 ψ \psi ψ 单调可导, ψ ′ ≠ 0 \psi^{\prime} \neq 0 ψ=0,则 ∫ f ( x ) d x = F ( ψ − 1 ( x ) ) + C \int f(x) d x=F\left(\psi^{-1}(x)\right)+C f(x)dx=F(ψ1(x))+C
  • 过程
    • ∫ f ( x ) d x \int f(x) d x f(x)dx 作变量代换 x = ψ ( t ) x=\psi(t) x=ψ(t)
    • ⇒ ∫ f ( ψ ( t ) ) ψ ′ ( t ) d t \Rightarrow \int f(\psi(t)) \psi^{\prime}(t) d t f(ψ(t))ψ(t)dt 可积
    • ⇒ F ( t ) + C \Rightarrow F(t)+C F(t)+C
      ↑ \uparrow
      t = ψ − 1 ( x ) t=\psi^{-1}(x) t=ψ1(x)
02 不定积分的分部积分法
  • 概述
    • ∫ u d v = u v − ∫ v d u \int u dv=u v-\int vdu udv=uvvdu
    • ∫ u v ′ d x = u v − ∫ u ′ v d x \int u v^{\prime} d x=u v-\int u^{\prime} v d x uvdx=uvuvdx
  • 过程
    • ∫ u v ′ d x ⇒ ∫ u d v = u v − ∫ v d u ⇒ u v − ∫ u ′ v d x \int u v^{\prime} d x \Rightarrow \int u d v=u v-\int v d u \Rightarrow u v-\int u^{\prime} v d x uvdxudv=uvvduuvuvdx
  • 适用
    • 适用于被积函数为两类函数乘积的积分
  • 如何选择 v ′ v' v
    • 一般而言依如下次序: e α x , sin ⁡ x ( e^{\alpha x}, \sin x( eαx,sinx( cos ⁡ x ) , x m \cos x), x^{m} cosx),xm
  • 凑微分优先权
    • 反三角 > 对数函数 > 幂函数 > 三角函数 > 指数函数
  • 规律
    • 保证 u u u 尽量简单
    • 将被积函数中尽量多的式子凑微分

最后

😊为防止河蟹,链接已经通过“与熊论道/熊曰加密”加密处理,将下面的文字复制到“与熊论道/熊曰加密”页面的第二个输入框,点击“领悟熊所言的真谛”即可查看链接啦:
😊熊曰:呋食食嗚類非象嗚家吃呱山萌萌笨有哞魚既魚性蜜覺呆食哮性洞哮山噗眠嗥嚄萌洞擊嗄襲呱物人你
😊如果嫌麻烦的话请私信咨询博主,谢谢!
😊PS:繁星依月/惟欢/一舟均为博主的马甲,本篇作品完全原创,再次感谢!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值