线性代数让我想想:快速求三阶矩阵的逆矩阵

快速求三阶矩阵的逆矩阵

前言

一般情况下,我们求解伴随矩阵是要注意符号问题和位置问题的(如下所示)
A − 1 = 1 [    ] [ − [    ] − [    ] − [    ]    − [    ] ] = A − 1 = 1 [    ] [     M 11 − [ M 12 ]     M 13 − [ M 21 ]     M 22 − [ M 23 ]        M 31 − [ M 32 ]     M 33 ] ⊤ \begin{aligned} & A^{-1}=\frac{1}{[\ \ ]} \left[\begin{array}{cccccc} & -[\ \ ] & \\ -[\ \ ] & & -[\ \ ]\ \ \\ & -[\ \ ] & \\ \end{array}\right]= \\ \\ & A^{-1}=\frac{1}{[\ \ ]} \left[\begin{array}{cccccc} \ \ \ M_{11} & -[M_{12}] & \ \ \ M_{13}\\ -[M_{21}] & \ \ \ M_{22} & -[M_{23}]\ \ \\ \ \ \ M_{31} & -[M_{32}] & \ \ \ M_{33}\\ \end{array}\right]^\top\\ \end{aligned} A1=[  ]1[  ][  ][  ][  ]  =A1=[  ]1   M11[M21]   M31[M12]   M22[M32]   M13[M23]     M33
我们根据位置安排(行调换)的策略可以避免符号问题,将问题进行化简。

例题一

求矩阵 D D D 的逆矩阵
D = [ 2 1 1 1 2 1 2 3 1 ] D=\left[\begin{array}{lll} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 3 & 1 \end{array}\right] D=212123111
我们把第一二列抄写到矩阵后面
D 1 = [ 2 1 1 2 1 1 2 1 1 2 2 3 1 2 3 ] D_1=\left[\begin{array}{lll|ll} 2 & 1 & 1 & 2 & 1 \\ 1 & 2 & 1 & 1 & 2 \\ 2 & 3 & 1 & 2 & 3 \end{array}\right] D1=212123111212123
然后把第一二行抄写到矩阵下面(新矩阵 D 1 D_1 D1 的第一二行),
这样我们就得到了一个五阶矩阵:
D 2 = [ 2 1 1 2 1 1 2 1 1 2 2 3 1 2 3 2 1 1 2 1 1 2 1 1 2 ] = [ 2 1 1 2 1 1 2 1 1 2 2 3 1 2 3 2 1 1 2 1 1 2 1 1 2 ] D_2=\left[\begin{array}{lll|ll} 2 & 1 & 1 & 2 & 1 \\ 1 & 2 & 1 & 1 & 2 \\ 2 & 3 & 1 & 2 & 3 \\ \hline 2 & 1 & 1 & 2 & 1 \\ 1 & 2 & 1 & 1 & 2 \\ \end{array}\right]= \left[\begin{array}{lllll} \textcolor{cornflowerblue}{2} & \textcolor{cornflowerblue}{1} & \textcolor{cornflowerblue}{1} & \textcolor{cornflowerblue}{2} & \textcolor{cornflowerblue}{1} \\ \textcolor{cornflowerblue}{1} & 2 & 1 & 1 & 2 \\ \textcolor{cornflowerblue}{2} & 3 & 1 & 2 & 3 \\ \textcolor{cornflowerblue}{2} & 1 & 1 & 2 & 1 \\ \textcolor{cornflowerblue}{1} & 2 & 1 & 1 & 2 \\ \end{array}\right] D2=2122112312111112122112312=2122112312111112122112312
然后我们把第一行和第一列删除(新矩阵 D 2 D_2 D2 的第一行和第一列,将标蓝的元素删除)
D 3 = [ 2 1 1 2 3 1 2 3 1 1 2 1 2 1 1 2 ] D_3=\left[\begin{array}{lllll} 2 & 1 & 1 & 2 \\ 3 & 1 & 2 & 3 \\ 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 2 \\ \end{array}\right] D3=2312111112212312
然后我们算出矩阵分块组成的九个二阶行列式:

在这里插入图片描述

然后我们将求出的九个行列式结果填充到伴随矩阵的框架里,记得加上转置符号
[ − 1     1 − 1     2     0 − 4 − 1 − 1     2 ] ⊤ = [ − 1     2 − 1     1     0 − 1 − 1 − 4     2 ] \left[\begin{array}{lllll} -1 &\ \ \ 1 & -1 \\ \ \ \ 2 &\ \ \ 0 & -4 \\ -1 & -1 &\ \ \ 2 \\ \end{array}\right]^\top= \left[\begin{array}{lllll} -1 &\ \ \ 2 & -1 \\ \ \ \ 1 &\ \ \ 0 & -1 \\ -1 & -4 &\ \ \ 2 \\ \end{array}\right] 1   21   1   0114   2=1   11   2   0411   2
这样我们就得到了伴随矩阵,然后计算矩阵对应的行列式 ∣ D ∣ = − 2 |D|=-2 D=2

最后根据公式 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A,求出逆矩阵 D − 1 D^{-1} D1
D − 1 = 1 ∣ D ∣ D ∗ =     1 − 2 [ − 1     2 − 1     1     0 − 1 − 1 − 4     2 ] = [     1 2 − 1     1 2 − 1 2     0     1 2     1 2     2 − 1 ] D^{-1}=\frac{1}{|D|}D^*=\frac{\ \ \ 1}{-2} \left[\begin{array}{lllll} -1 &\ \ \ 2 & -1 \\ \ \ \ 1 &\ \ \ 0 & -1 \\ -1 & -4 &\ \ \ 2 \\ \end{array}\right]= \left[\begin{array}{lllll} \ \ \ \frac{1}{2} &-1 & \ \ \ \frac{1}{2} \\ -\frac{1}{2} &\ \ \ 0 & \ \ \ \frac{1}{2} \\ \ \ \ \frac{1}{2} &\ \ \ 2 & -1 \\ \end{array}\right] D1=D1D=2   11   11   2   0411   2=   2121   211   0   2   21   211

例题二

求矩阵 A A A 的逆矩阵
A = [ 1 1 1 4 2 1 9 3 1 ] A=\left[\begin{array}{lll} 1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1 \end{array}\right] A=149123111
抄写后对应的五阶矩阵为:
A 1 = [ 1 1 1 1 1 4 2 1 4 2 9 3 1 9 3 1 1 1 1 1 4 2 1 4 2 ] A_1=\left[\begin{array}{lll} 1 & 1 & 1 &1 & 1\\ 4 & 2 & 1 &4 & 2\\ 9 & 3 & 1 &9 & 3\\ 1 & 1 & 1 &1 & 1\\ 4 & 2 & 1 &4 & 2 \end{array}\right] A1=1491412312111111491412312
删除后得到的四阶矩阵为:
A 2 = [ 2 1 4 2 3 1 9 3 1 1 1 1 2 1 4 2 ] A_2=\left[\begin{array}{lll} 2 & 1 &4 & 2\\ 3 & 1 &9 & 3\\ 1 & 1 &1 & 1\\ 2 & 1 &4 & 2 \end{array}\right] A2=2312111149142312
那么对应的伴随矩阵为:
A ∗ = [ − 1     5 − 6     2 − 8     6 − 1     3 − 2 ] ⊤ = [ − 1     2 − 1     5 − 8     3 − 6     6 − 2 ] A^*=\left[\begin{array}{lllll} -1 &\ \ \ 5 & -6 \\ \ \ \ 2 & -8 & \ \ \ 6 \\ -1 & \ \ \ 3 & -2 \\ \end{array}\right]^\top= \left[\begin{array}{lllll} -1 &\ \ \ 2 & -1 \\ \ \ \ 5 & -8 & \ \ \ 3 \\ -6& \ \ \ 6 & -2 \\ \end{array}\right] A=1   21   58   36   62=1   56   28   61   32
矩阵对应的行列式为 ∣ A ∣ = − 2 |A|=-2 A=2,根据公式计算得到逆矩阵:
A − 1 = 1 ∣ A ∣ A ∗ =     1 − 2 [ − 1     2 − 1     5 − 8     3 − 6     6 − 2 ] = [     1 2 − 1     1 2 − 5 2     4 − 3 2     3 − 3     1 2 ] A^{-1}=\frac{1}{|A|}A^*=\frac{\ \ \ 1}{-2} \left[\begin{array}{lllll} -1 &\ \ \ 2 & -1 \\ \ \ \ 5 & -8 & \ \ \ 3 \\ -6& \ \ \ 6 & -2 \\ \end{array}\right]= \left[\begin{array}{lllll} \ \ \ \frac{1}{2} &-1 & \ \ \ \frac{1}{2} \\ -\frac{5}{2} &\ \ \ 4 & -\frac{3}{2} \\ \ \ \ 3 & -3 & \ \ \ \frac{1}{2} \\ \end{array}\right] A1=A1A=2   11   56   28   61   32=   2125   31   43   2123   21

  • 53
    点赞
  • 103
    收藏
    觉得还不错? 一键收藏
  • 12
    评论
线性代数第二版》是一本经典的线性代数教材。尽管它涵盖了众多线性代数的重要概念和理论,但是行列式是其中的一个关键内容。下面我将使用简洁的思维导图介绍一下《线性代数第二版》中关于行列式的知识点。 首先,在思维导图的中心,我们可以写下“行列式”这个概念。行列式是一个矩阵的重要性质,可以用一个标量来表示。行列式的计算可以按照一定的规则进行,其中最常见且重要的有三个:余子式、代数余子式和按行展开。 接下来,在思维导图的左侧,我们可以列出行列式的定义及其性质。行列式的定义是一个递归的过程,首先是1行列式为其唯一元素本身,然后是2行列式等于两个元素的交叉相减,以此类推。行列式的性质包括对换行性质、按列展开性质、按行展开性质等。这些性质能够帮助我们简化行列式的计算。 在思维导图的右侧,我们可以写下如何计算行列式的方法。最常用的方法是利用高斯消元法将行列式转化为上三角形矩阵,然后再进行解。另外,我们也可以利用行列式的性质,如按行展开性质,来计算行列式的值。 最后,在思维导图的底部,我们可以列出行列式的应用领域。行列式不仅仅在线性代数中有重要的应用,还广泛应用于其他数学和工程领域。例如,在计算机图形学中,我们可以利用行列式来解几何变换中的坐标变换等问题。 通过这个思维导图,我们可以清晰地了解到《线性代数第二版》中关于行列式的概念、性质、计算方法以及应用领域。希望这个简洁的导图能够帮助更多的人更好地理解行列式这一重要主题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值