高等数学笔记-乐经良老师
第十章 曲线积分和曲面积分
第一节 第一类曲线积分和曲面积分
一、数量值函数的曲线积分
01 概念
问题:怎样求一段曲线弧状的质线的质量?

设 xyxyxy 平面的曲线弧为 CCC,端点 A,BA,BA,B,其上 (x,y)(x,y)(x,y) 处的线密度为 μ(x,y)\mu(x,y)μ(x,y)
用分点 A1,A2,⋯ ,An−1A_{1}, A_{2}, \cdots, A_{n-1}A1,A2,⋯,An−1,将 CCC 分成 nnn 小段,记 A0=A,An=BA_{0}=A, A_{n}=BA0=A,An=B,
第 iii 个小弧段 Ai−1AiA_{i-1} A_{i}Ai−1Ai 的长度为 Δsi\Delta s_{i}Δsi 第 iii 个小弧段上任取一点 (ξi,ηi)\left(\xi_{i}, \eta_{i}\right)(ξi,ηi),
小弧段的质量近似 μ(ξi,ηi)Δsi\mu\left(\xi_{i}, \eta_{i}\right) \Delta s_{i}μ(ξi,ηi)Δsi,质线的质量近似为 ∑i=1nμ(ξi,ηi)Δsi\sum \limits_{i=1}^{n} \mu\left(\xi_{i}, \eta_{i}\right) \Delta s_{i}i=1∑nμ(ξi,ηi)Δsi
记 λ=max1≤i≤nΔsi\lambda=\max \limits_{1 \leq i \leq n} \Delta s_{i}λ=1≤i≤nmaxΔsi,若极限 limλ→0∑i=1nμ(ξi,ηi)Δsi\lim \limits_{\lambda \rightarrow 0} \sum \limits_{i=1}^{n} \mu\left(\xi_{i}, \eta_{i}\right) \Delta s_{i}λ→0limi=1∑nμ(ξi,ηi)Δsi 存在,那么此极限给出了弧状质线的质量。
试一试
去掉物理背景,取代密度 μ(x,y)\mu(x, y)μ(x,y) 为定义在曲线 CCC 上的有界函数 f(x,y)f(x, y)f(x,y),
给出数量值函数曲线积分的定义:∫Cf(x,y)ds=limλ→0∑i=1nf(ξi,ηi)Δsi\int \limits_{C} f(x, y) d s=\lim \limits_{\lambda \rightarrow 0} \sum \limits_{i=1}^{n} f\left(\xi_{i}, \eta_{i}\right) \Delta s_{i}C∫f(x,y)ds=λ→0limi=1∑nf(ξi,ηi)Δsi .
数量值曲线积分又称第一类曲线积分。
几何问题:求一块柱面的面

设 CCC 是 xyx yxy 平面上曲线,SSS 是以 CCC 为准线,母线垂直 xyx yxy 平面的柱面,
柱面高度为 f(x,y)f(x, y)f(x,y) ,求 xyx yxy 平面以上这部分柱面 SSS 的面积
结论:A=∫Cf(x,y)dsA=\int \limits_{C} f(x, y) d sA=C∫f(x,y)ds (曲线积分的几何意义)
02 性质
(1) 与曲线方向无关:若曲线 CCC,则
∫ABf(x,y)ds=∫BAf(x,y)ds \int \limits_{A B} f(x, y) d s=\int \limits_{B A} f(x, y) d s AB∫f(x,y)ds=BA∫f(x,y)ds
(2) 线性:
∫C[αf(x,y)+βg(x,y)]ds=α∫Cf(x,y)ds+β∫Cg(x,y)ds \int \limits_{C}[\alpha f(x, y)+\beta g(x, y)] d s=\alpha \int_{C} f(x, y) d s+\beta \int_{C} g(x, y) d s C∫[αf(x,y)+βg(x,y)]ds=α∫Cf(x,y)ds+β∫Cg(x,y)ds
(3) 可加性:设曲线段 C1C_{1}C1 与 C2C_{2}C2 首尾相接成曲线 CCC
∫Cf(x,y)ds=∫C1f(x,y)ds+∫C2f(x,y)ds \int \limits_{C} f(x, y) d s=\int_{C_{1}} f(x, y) d s+\int_{C_{2}} f(x, y) d s C∫f(x,y)ds=∫C1f(x,y)ds+∫C2f(x,y)ds
(4) 中值定理:设函数 fff 在光滑曲线段 CCC 上连续,则存在 (ξ,η)∈C(\xi, \eta) \in C(ξ,η)∈C,使得
∫Cf(x,y)ds=f(ξ,η)⋅sc(Sc为曲线段C的长度) \int \limits_{C} f(x, y) d s=f(\xi, \eta) \cdot s_{c}\quad( S_{c} 为曲线段 C 的长度) C∫f(x,y)ds=f(ξ,η)⋅sc(Sc为曲线段C的长度)
二、数量值函数曲线积分的计算
设函数 f(x,y)f(x,y)f(x,y) 在曲线 CCC 上连续,CCC 的参数方程为 { x=x(t)y=y(t)t∈[α,β]\left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array} \quad t \in[\alpha, \beta]\right.{ x=x(t)y=y(t)t∈[α,β] ,
其中 x(t),y(t)x(t),y(t)x(t),y(t) 均有连续导数。那么可得:
∫Cf(x,y)ds=∫αβf(x(t),y(t))x′2(t)+y′2(t)dt(x′2(t)+y′2(t)dt 为弧微分 ds) \int \limits_{C} f(x, y) d s=\int_{\alpha}^{\beta} f(x(t), y(t)) \sqrt{x^{\prime 2}(t)+y^{\prime 2}(t)} d t\quad(\sqrt{x^{\prime 2}(t)+y^{\prime 2}(t)} d t\ \ 为弧微分\ ds) C∫f(x,y)ds=∫αβf(x(t),y(t))x′2(t)+y′2(t)dt(x′2(t)+y′2(t)dt 为弧微分 ds)
由于这积分中的 dsd sds 是弧长,取正值,故右端积分限应 α≤β\alpha \leq \betaα≤β
当曲线形式为 y=y(x),x∈[a,b]y=y(x),\quad x\in[a,b]y=y(x),x∈[a,b]
∫Cf(x,y)ds=∫abf(x,y(x))1+y′2(x)dx \int \limits_{C} f(x, y) d s=\int_{a}^{b} f(x, y(x)) \sqrt{1+y^{\prime 2}(x)} d x C∫f(x,y)ds=∫abf(x,y(x))1+y′2(x)dx
回顾在极坐标 r=r(θ)r=r(\theta)r=r(θ),ds=r2+r′2dθds=\sqrt{r^2+r'^2}d\thetads=r2+r′2dθ .
思考或猜测
对于空间曲线 LLL:
x=x(t),y=y(t),z=z(t),t∈[α,β] x=x(t), y=y(t), z=z(t), \quad t \in[\alpha, \beta] x=x(t),y=y(t),z=z(t),t∈[α,β]
第一型曲线积分 ∫Lf(x,y,z)ds\int \limits_{L} f(x, y, z) d sL∫f(x,y,z)ds 的概念与计算式任何?
三、数量值函数的曲面积分
问题:怎样求一块曲面的质量?
设函数 f(x,y,z)f(x, y, z)f(x,y,z) 定义在分片光滑的曲面 SSS 上,试将 f(x,y,z)f(x, y, z)f(x,y,z) 视为面密度,
采用分割、求和、取极限的来求这曲面质量,从而导出第一型曲面积分的定义,
其记号为 ∬Sf(x,y,z)dS\iint \limits_{S} f(x, y, z) d SS∬f(x,y,z)dS .
第一型曲面积分有类于第一型曲线积分的性质,如线性和可加性。
四、第一类曲面积分计算法
回顾在重积分一章,我们已经得知:曲线 SSS 为 z=z(x,y),(x,y)∈Dz=z(x,y),\quad(x,y)\in Dz=z(x,y),(x,y)∈D .
则有,dS=1+zx2+zy2 dxdyd S=\sqrt{1+z_{x}^{2}+z_{y}^{2}}\ d x d ydS=1+zx2+zy2 dxdy .
从而,∬Sf(x,y,z)dS=∬Df(x,y,z(x,y))1+zx2+zy2dxdy\iint \limits_{S} f(x, y, z) d S=\iint \limits_{D} f(x, y, z(x, y)) \sqrt{1+z_{x}^{2}+z_{y}^{2}} d x d yS∬f(x,y,z)dS=D∬f(x,y,z(x,y))1+zx2+zy2
向量与曲面积分:格林、高斯和斯托克斯公式

本文深入探讨了向量值函数的曲线积分与曲面积分,包括第一类曲线积分与曲面积分的定义、性质和计算方法。此外,介绍了第二类曲线积分的概念,以及格林公式、高斯公式和斯托克斯公式,揭示了它们在解决实际问题中的应用,特别是涉及曲面质量、流体流动和向量场的通量等问题。
最低0.47元/天 解锁文章
2366

被折叠的 条评论
为什么被折叠?



