一种otsu阈值分割方法

本文介绍了OTSU阈值分割算法的基本原理,并提供了一个使用最大间方差公式的简单实现。通过计算前景和背景像素的比例及平均值,找到最佳分割阈值,从而有效地分离图像的前景和背景。
摘要由CSDN通过智能技术生成

otsu是很经典的阈值分割算法,这里是我自己写的一个小程序,用到的是最经典,最基础的最大间方差公式:icv = w0[m](u0[m]-ut)(u0[m]-ut)+w1[m](uk[m]-ut)(uk[m]-ut) 。
w0:是前景占整幅图的比例值
u0:是前景像素值的平均值
w1:是背景占整幅图的比例值
uk:是背景像素值得平均值
ut:是整幅图象的像素的平均值

以m为阈值分割出前景与背景,遍历0到255像素值,得到最大间方差。
下面是代码:

int otsu(cv::Mat srcImg,int imageHeight,int imageWidth)
{
    const int grayLevel=256;

    int i,j;  //位置循环变量
    int m,n;   //灰度循环变量

    //存放原图像的均值
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值