_cpp AVL树(map、set等关联式容器的底层结构)

0. 前言

我们知道map/multimap/set/multiset,这几个容器有个
共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。

1. AVL树的概念

  • 原因:

    • 二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。
  • 方案:

    • 因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法: 当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整), 即可降低树的高度,从而减少平均搜索长度。
  • 一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

    • 它的左右子树都是AVL树;
    • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)。
      在这里插入图片描述

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)。(也就是这个树的高度h)

2. AVL树节点的定义

  • AVL树节点的定义:
template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;// 该节点的左孩子
	AVLTreeNode<K, V>* _right;// 该节点的右孩子
	AVLTreeNode<K, V>* _parent;// 该节点的双亲

	pair<K, V> _kv;
	int _bf; //该节点的平衡因子

	AVLTreeNode(const pair<K, V>& kv)//初始化列表初始化
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _bf(0)
	{}
};

3. AVL树的插入

  • AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。

AVL树的插入过程分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子
  • 实现思路:
  1. 先按照二叉搜索树的规则将节点插入到AVL树中。
  2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
    1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可。
    1. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2。
  1. 此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2。
    1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功。
    1. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新。
    1. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理。
  • 实现的模板如下,旋转下面会具体讲解:

	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		//找find
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				//重复的
				return false;
			}
		}

		//插入
		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		//更新平衡因子
		while (parent)	//		从下往上更新,最坏情况全部更新完
		{
			if (cur == parent->_right)
			{
				parent->_bf++;
			}
			else      //cur==paren->_left
			{
				parent->_bf--;
			}

			//是否继续更新?
			if (parent->_bf == 0)
			{
				//高度不变,更新结束
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)	//-1 、1
			{
				//子树高度变了,继续更新祖先
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)	//平衡旋转
			{
			     // 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent;为根的树进行旋转处理
			
				//旋转:左、右、左右、右左
				if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent);
				}
				
				break;
			}
			else
			{
				assert(false);
			}
		}
		return true;
	}

注意:

  • 更新方法:右平衡因子++;左平衡因子–。当遇到parent平衡因子没变化(0)说明高度没变,(-1和1)一定由0变化的即树高度变了,-2和2需要旋转。

4. AVL树的旋转

  • 原因:
    • 如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。
  • 根据节点插入位置的不同,AVL树的旋转分为四种:

下面讲解旋转实现的方法。

4.1 新节点插入较高右子树的右侧—右右:左单旋

  • 抽象图:
    在这里插入图片描述

  • 实例化图:
    下面5这个结点不为nulltptr的情况在这里插入图片描述

    下面5这个结点为nulltptr的情况
    在这里插入图片描述
    代码实现如下:(注意原根的parent,它可能不为空即可能为一个树中的子树)

void RotateL(Node* parent)	//左旋
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}

		Node* ppNode = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;
		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else  //ppNode->_right == parent
			{
				ppNode->_right = subR;
			}
			subR->_parent = ppNode;
		}

		//更新平衡因子
		parent->_bf = 0;
		subR->_bf = 0;
	}

4.2 新节点插入较高左子树的左侧—左左:右单旋

  • 抽象图:
    在这里插入图片描述

  • 实例化图:
    下面5这个结点不为nulltptr的情况在这里插入图片描述
    下面5这个结点为nulltptr的情况
    在这里插入图片描述
    代码实现如下:

void RotateR(Node* parent)	//右旋
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
		{
			subLR->_parent = parent;
		}

		Node* ppNode = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;
		if (_root == parent)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
			subL->_parent = ppNode;
		}

		//更新平衡因子
		parent->_bf = 0;
		subL->_bf = 0;
	}

通过左右旋转的方法,我们知道了旋转是如何做到的。

4.3.新节点插入较高左子树的右侧—左右:先左单旋再右单旋

其实就是对左、右旋转的复用。

  • 抽象图:
    在这里插入图片描述
  • 实例化图
    在这里插入图片描述
    代码实现如下:
void RotateLR(Node* parent)	//左右旋转
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);

		//更新平衡因子
		if (bf == 0)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == 1)
		{
			subLR->_bf = 0;
			subL->_bf = -1;
			parent->_bf = 0;
		}
		else if (bf == -1)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->_bf = 1;
		}
		else
		{
			//旋转前就有问题
			assert(false);
		}
	}

4.4 新节点插入较高右子树的左侧—右左:先右单旋再左单旋

其实就是对左、右旋转的复用。

  • 抽象图:
    在这里插入图片描述
  • 实例化图:
    在这里插入图片描述
    代码实现如下:
void RotateRL(Node* parent)	//右左旋转
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		//更新平衡因子
		if (bf == 0)
		{
			subRL->_bf = 0;
			subR->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == 1)
		{
			subRL->_bf = 0;
			subR->_bf = 0;
			parent->_bf = -1;
		}
		else if (bf == -1)
		{
			subRL->_bf = 0;
			subR->_bf = 1;
			parent->_bf = 0;
		}
		else
		{
			//旋转前就有问题
			assert(false);
		}
	}

总结:
假如以parent为根的子树不平衡,即parent的平衡因子为2或者-2,分以下情况考虑

  1. parent的平衡因子为2,说明parent的右子树高,设parent的右子树的根为pSubR
    • 当subR的平衡因子为1时,执行左单旋
    • 当subR的平衡因子为-1时,执行右左双旋
  2. parent的平衡因子为-2,说明parent的左子树高,设parent的左子树的根为subL
    • 当subL的平衡因子为-1是,执行右单旋
    • 当subL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

5. AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树。

  2. 验证其为平衡树

    • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
    • 节点的平衡因子是否计算正确。
// AVL树的验证
	bool IsAVLTree()
	{
		return _IsAVLTree(_root);
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

具体实现如下:

验证其为平衡树思路:计算每棵树的高度差,再与平衡因子比较即可。

int _Height(Node* root)
	{
		if (root == nullptr)
		{
			return 0;
		}

		return max(_Height(root->_left), _Height(root->_right)) + 1;
	}
	
	bool _IsAVLTree(Node* root)
	{
		//空数也是AVL树
		if (nullptr == root)
		{
			return true;
		}

		//计算_root结点的平衡因子
		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		int diff = rightHeight - leftHeight;
		//判断
		if (abs(diff) >= 2)
		{
			cout << root->_kv.first << "结点平衡因子异常" << endl;
			return false;
		}
		else if (diff != root->_bf)
		{
			cout << root->_kv.first << "结点平衡因子异常" << endl;
			return false;
		}

		return  _IsAVLTree(root->_left) && _IsAVLTree(root->_right);
	}
void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_kv.second << " ";
		_InOrder(root->_right);
	}

6. 本篇总代码

#pragma once
#include<iostream>
#include<vector>
#include<assert.h>
#include<queue>
#include<time.h>

using namespace std;

template<class K, class V>
struct AVLTreeNode
{
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;

	pair<K, V> _kv;
	int _bf; //平衡因子

	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		, _bf(0)
	{}
};

template<class K, class V>
class AVLTree
{
public:
	typedef AVLTreeNode<K, V> Node;
	AVLTree()
	{}

	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}

		//找find
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				//重复的
				return false;
			}
		}

		//插入
		cur = new Node(kv);
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		//更新平衡因子
		while (parent)	//		从下往上更新,最坏情况全部更新完
		{
			if (cur == parent->_right)
			{
				parent->_bf++;
			}
			else      //cur==paren->_left
			{
				parent->_bf--;
			}

			//是否继续更新?
			if (parent->_bf == 0)
			{
				//高度不变,更新结束
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)	//-1 、1
			{
				//子树高度变了,继续更新祖先
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)	//平衡旋转
			{
				//旋转:左、右、左右、右左
				if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1)
				{
					RotateR(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					RotateLR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					RotateRL(parent);
				}
				
				break;
			}
			else
			{
				assert(false);
			}
		}
		return true;
	}

	// AVL树的验证
	bool IsAVLTree()
	{
		return _IsAVLTree(_root);
	}

	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}

private:
	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_kv.second << " ";
		_InOrder(root->_right);
	}

	int _Height(Node* root)
	{
		if (root == nullptr)
		{
			return 0;
		}

		return max(_Height(root->_left), _Height(root->_right)) + 1;
	}
	bool _IsAVLTree(Node* root)
	{
		//空数也是AVL树
		if (nullptr == root)
		{
			return true;
		}

		//计算_root结点的平衡因子
		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);
		int diff = rightHeight - leftHeight;
		//判断
		if (abs(diff) >= 2)
		{
			cout << root->_kv.first << "结点平衡因子异常" << endl;
			return false;
		}
		else if (diff != root->_bf)
		{
			cout << root->_kv.first << "结点平衡因子异常" << endl;
			return false;
		}

		return  _IsAVLTree(root->_left) && _IsAVLTree(root->_right);
	}

	void RotateRL(Node* parent)	//右左旋转
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		//更新平衡因子
		if (bf == 0)
		{
			subRL->_bf = 0;
			subR->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == 1)
		{
			subRL->_bf = 0;
			subR->_bf = 0;
			parent->_bf = -1;
		}
		else if (bf == -1)
		{
			subRL->_bf = 0;
			subR->_bf = 1;
			parent->_bf = 0;
		}
		else
		{
			//旋转前就有问题
			assert(false);
		}
	}

	void RotateLR(Node* parent)	//左右旋转
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);

		//更新平衡因子
		if (bf == 0)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->_bf = 0;
		}
		else if (bf == 1)
		{
			subLR->_bf = 0;
			subL->_bf = -1;
			parent->_bf = 0;
		}
		else if (bf == -1)
		{
			subLR->_bf = 0;
			subL->_bf = 0;
			parent->_bf = 1;
		}
		else
		{
			//旋转前就有问题
			assert(false);
		}
	}

	void RotateR(Node* parent)	//右旋
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
		{
			subLR->_parent = parent;
		}

		Node* ppNode = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;
		if (_root == parent)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
			subL->_parent = ppNode;
		}

		//更新平衡因子
		parent->_bf = 0;
		subL->_bf = 0;
	}

	void RotateL(Node* parent)	//左旋
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}

		Node* ppNode = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;
		if (parent == _root)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else  //ppNode->_right == parent
			{
				ppNode->_right = subR;
			}
			subR->_parent = ppNode;
		}

		//更新平衡因子
		parent->_bf = 0;
		subR->_bf = 0;
	}

	Node* _root = nullptr;
};

void TectAVLTree1()
{
	int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	//int a[] = { 1,2,3,4,5,6,7,8,9 };
	AVLTree<int, int> t;
	for (auto e : a)
	{
		t.Insert(make_pair(e, e));
	}

	t.InOrder();

	if (t.IsAVLTree())
		cout << "ture" << endl;
	else
		cout << "false" << endl;
}

在这里插入图片描述

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

昨天;明天。今天。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值