Cpp || AVL树

一:AVL树的简介

1.1:AVL树的概念

【问题的显现】
二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序的二叉搜索树将退化为单支树(如下图所示),查找元素相当于在顺序表中搜索元素,效率低下.
在这里插入图片描述
【解决办法–>AVL树的提出
当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度.

【注意】
一棵AVL树或者是空树是具有以下性质的二叉搜索树:
它的左右子树都是AVL树左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

【AVL树图示】
在这里插入图片描述

  • 观察上图,可以看出这棵树中平衡因子的大小关系.

如果一棵二叉搜索树是高度平衡的,它就是AVL树.如果它有n个结点,其高度可保持在O(log2N) ,搜索时间复杂度O(log2N).

二:AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树.那么AVL树的插入过程可以分为两步:

2.1:按照二叉搜索树的方式插入新节点
bool insert(const T& val)
	{
		if (_root == nullptr)
		{
			_root = new Node(val);
			return true;
		}

		pNode cur = _root;
		pNode parent = nullptr;
		while (cur)
		{
			parent = cur;
			if (cur->_data > val)
			{
				cur = cur->_pLeft;
			}
			else if (cur->_data < val)
			{
				cur = cur->_pRight;
			}
			else
				return false;
		}

		pNode newNode = new Node(val);
		if (parent->_data > val)
			parent->_pLeft = newNode;
		else
			parent->_pRight = newNode;
		newNode->_pParent = parent;
		cur = newNode;
		//调整,保证平衡
		while (parent)
		{
			//更新当前节点的平衡因子
			if (parent->_pLeft == cur)
				--parent->_bf;
			else
				++parent->_bf;
			//检查平衡因子,_bf ==0, 高度没有发生变化,停止更新
			if (parent->_bf == 0)
				break;
			//高度加1,更新此路径上的祖先节点的平衡因子
			if (parent->_bf == 1 || parent->_bf == -1)
			{
				cur = parent;
				parent = parent->_pParent;
			}

			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//不平衡,需要调整
				//左旋
				if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1)
				{
					//右旋
					RotateR(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					//左右双旋

					RotateL(cur);
					RotateR(parent);

				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					pNode subR = parent->_pRight;
					pNode subRL = subR->_pLeft;
					int bf = subRL->_bf;
					//右左双旋
					RotateR(cur);
					RotateL(parent);
					if (bf == 1)
					{
						subR->_bf = 0;
						parent->_bf = -1;
					}
					else if (bf == -1)
					{
						parent->_bf = 0;
						subR->_bf = 1;
					}
				}

				//旋转结束,已经平衡,结束调整
				break;
			}
		}
		return true;
	}

【总结】

  • 1.先按照二叉搜索树的规则将节点插入到AVL树中
  • 2.新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性

pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:

  • 1.如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
  • 2.如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可

此时:pParent的平衡因子可能有三种情况:0,正负1,正负2

  • 1.如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功
  • 2.如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
  • 3.如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理
2.2:AVL树的旋转
2.2.1:左旋
2.2.1:虚拟状态
  • AVL树原始图
    在这里插入图片描述
    其中的a,b,c表示的是子树,其树的高度是h

  • 现往c子树中插入某个新的结点后
    在这里插入图片描述

  • 调整完成后在这里插入图片描述

2.2.2:实例
  • 按照代码进行调整的过程
    在这里插入图片描述
2.2.3:代码实现
  • 左旋条件:parent->_bf== 2 && cur->_bf==1
void RotateL(pNode parent)
    {
      pNode subR = parent->_pRight;
      pNode subRL = subR->_pLeft;
      //旋转
      subR->_pLeft = parent;
      parent->_pRight = subRL;

      //更新三叉链
      //链接subRL 和parent
      if (subRL)
        subRL->_pParent = parent;

      //链接subR 和 parent->_pParent
      if (parent != _root)
      {
        pNode gParent = parent->_pParent;
        //判断parent之前是parent->_pParent的那一边的节点
        //把subR链接到对应的边

        if (gParent->_pLeft == parent)
          gParent->_pLeft = subR;
        else
          gParent->_pRight = subR;
        //更新subR的pParent
        subR->_pParent = gParent;
      }
      else
      {
        //如果parent是根,subR变成新的根
        subR->_pParent = nullptr;
        _root = subR;
      }

      //链接subR 和 parent
      parent->_pParent = subR;

      //更新平衡因子
      subR->_bf = parent->_bf = 0;
    }

2.3:右旋
2.3.1:虚拟状态

在这里插入图片描述

2.3.2:实例

在这里插入图片描述

2.3.3:代码实现
void RotateR(pNode parent)
    {
      pNode subL = parent->_pLeft;
      pNode subLR = subL->_pRight;
      // 1. 单向链接subL, subLR, parent
      subL->_pRight = parent;
      parent->_pLeft = subLR;
      //2 向上链接subLR, parent
      if (subLR)
        subLR->_pParent = parent;
      //3. 双向链接subL与pParent->_pParent
      if (parent != _root)
      {
        pNode gParent = parent->_pParent;
        if (gParent->_pLeft == parent)
          gParent->_pLeft = subL;
        else
          gParent->_pRight = subL;
        subL->_pParent = gParent;
      }
      else
      {
        subL->_pParent = nullptr;
        _root = subL;
        //更新根节点
      }
      //4. 向上链接parent, subL
      parent->_pParent = subL;
      //更新平衡因子
      parent->_bf = subL->_bf = 0;

    }

2.4:左右旋:先左旋再右旋
2.4.1:左右旋转图视

在这里插入图片描述

  • 分析
  • 1.在上图中值为60的结点的左子树中插入了一个新的结点
  • 2.先完成一次左单旋
  • 3.再完成一次右单旋
  • 实例(两种不同的插入方式平衡因子的变动)
    在这里插入图片描述
2.4.1:实现代码
  • 条件:parent->_bf== 2 && cur->_bf==-1
if (parent->_bf == -2 && cur->_bf == 1)
{
          pNode subL=parent->_left;                    
            pNode subLR=subL->_right;
            int bf=subLR->_bf;
            RotateL(cur);
            RotateR(parent);
 
            if(bf==1){
              parent->_bf=0;
              subL->_bf=-1;
            }else if(bf==-1){
              parent->_bf=1;
              subL->_bf=0;
            }
  }
2.5:右左旋:先右旋,再左旋
2.5.1:右左旋图视

在这里插入图片描述

  • 分析
  • 1.在60的右子树中插入了一个新的结点
  • 2.先完成一次右单旋
  • 3.再完成一次左单旋
  • 实例(两种不同插入方式,导致的平衡因子的改变)
    在这里插入图片描述
2.5.2:代码实现
  • 条件:parent->_bf== 2 && sub->_bf ==-1
if (parent->_bf == 2 && cur->_bf == -1)
{
	pNode subR = parent->_pRight;
	pNode subRL = subR->_pLeft;
	int bf = subRL->_bf;
	//右左双旋
	RotateR(cur);
	RotateL(parent);
		if (bf == 1)
		{
			subR->_bf = 0;
			parent->_bf = -1;
		}
		else if (bf == -1)
		{
			parent->_bf = 0;
			subR->_bf = 1;
		}
}
三:实现AVL树
#include <iostream>

using namespace std;

template<class T>
//AVL树结点的定义
struct AVLNode
{
	AVLNode(const T& val = T())
	:_data(val)
	, _pLeft(nullptr)
	, _pRight(nullptr)
	, _pParent(nullptr)
	, _bf(0)
	{}
	T _data;
	AVLNode<T>* _pLeft;    //指向该节点的左孩子
	AVLNode<T>* _pRight;  //指向该节点的右孩子
	AVLNode<T>* _pParent; //指向该节点的双亲结点
	//平衡因子
	int _bf;
};

template <class T>
class AVLTree
{
public:
	typedef AVLNode<T> Node;
	typedef Node* pNode;

	bool insert(const T& val)
	{
		if (_root == nullptr)
		{
			_root = new Node(val);
			return true;
		}

		pNode cur = _root;
		pNode parent = nullptr;
		while (cur)
		{
			parent = cur;
			if (cur->_data > val)
			{
				cur = cur->_pLeft;
			}
			else if (cur->_data < val)
			{
				cur = cur->_pRight;
			}
			else
				return false;
		}

		pNode newNode = new Node(val);
		if (parent->_data > val)
			parent->_pLeft = newNode;
		else
			parent->_pRight = newNode;
		newNode->_pParent = parent;
		cur = newNode;
		//调整,保证平衡
		while (parent)
		{
			//更新当前节点的平衡因子
			if (parent->_pLeft == cur)
				--parent->_bf;
			else
				++parent->_bf;
			//检查平衡因子,_bf ==0, 高度没有发生变化,停止更新
			if (parent->_bf == 0)
				break;
			//高度加1,更新此路径上的祖先节点的平衡因子
			if (parent->_bf == 1 || parent->_bf == -1)
			{
				cur = parent;
				parent = parent->_pParent;
			}

			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				//不平衡,需要调整
				//左旋
				if (parent->_bf == 2 && cur->_bf == 1)
				{
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1)
				{
					//右旋
					RotateR(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					//左右双旋
            pNode subL=parent->_left;                    
            pNode subLR=subL->_right;
            int bf=subLR->_bf;
            RotateL(cur);
            RotateR(parent);
 
            if(bf==1){
              parent->_bf=0;
              subL->_bf=-1;
            }else if(bf==-1){
              parent->_bf=1;
              subL->_bf=0;
            }
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					pNode subR = parent->_pRight;
					pNode subRL = subR->_pLeft;
					int bf = subRL->_bf;
					//右左双旋
					RotateR(cur);
					RotateL(parent);
					if (bf == 1)
					{
						subR->_bf = 0;
						parent->_bf = -1;
					}
					else if (bf == -1)
					{
						parent->_bf = 0;
						subR->_bf = 1;
					}
				}

				//旋转结束,已经平衡,结束调整
				break;
			}
		}
		return true;
	}

	void RotateL(pNode parent)
	{
		pNode subR = parent->_pRight;
		pNode subRL = subR->_pLeft;
		//旋转
		subR->_pLeft = parent;
		parent->_pRight = subRL;

		//更新三叉链
		//链接subRL 和parent
		if (subRL)
			subRL->_pParent = parent;

		//链接subR 和 parent->_pParent
		if (parent != _root)
		{
			pNode gParent = parent->_pParent;
			//判断parent之前是parent->_pParent的那一边的节点
			//把subR链接到对应的边

			if (gParent->_pLeft == parent)
				gParent->_pLeft = subR;
			else
				gParent->_pRight = subR;
			//更新subR的pParent
			subR->_pParent = gParent;
		}
		else
		{
			//如果parent是根,subR变成新的根
			subR->_pParent = nullptr;
			_root = subR;
		}

		//链接subR 和 parent
		parent->_pParent = subR;

		//更新平衡因子
		subR->_bf = parent->_bf = 0;
	}


	//右旋
	void RotateR(pNode parent)
	{
		pNode subL = parent->_pLeft;
		pNode subLR = subL->_pRight;
		// 1. 单向链接subL, subLR, parent
		subL->_pRight = parent;
		parent->_pLeft = subLR;
		//2 向上链接subLR, parent
		if (subLR)
			subLR->_pParent = parent;
		//3. 双向链接subL与pParent->_pParent
		if (parent != _root)
		{
			pNode gParent = parent->_pParent;
			if (gParent->_pLeft == parent)
				gParent->_pLeft = subL;
			else
				gParent->_pRight = subL;
			subL->_pParent = gParent;
		}
		else
		{
			subL->_pParent = nullptr;
			_root = subL;
			//更新根节点
		}
		//4. 向上链接parent, subL
		parent->_pParent = subL;
		//更新平衡因子
		parent->_bf = subL->_bf = 0;

	}

	/*
	左右双旋的条件:parent->bf==-2;孩子结点bf==1;
	先左旋,后右旋
	左旋:RotateL(subL)
	右旋:RotateR(parent)
	*/

	void Inorder()
	{
		_Inorder(_root);
		cout << endl;
	}

	void _Inorder(pNode root)
	{
		if (root)
		{
			_Inorder(root->_pLeft);
			cout << root->_data << " ";
			_Inorder(root->_pRight);
		}
	}

	int Height(pNode cur)
	{
		if (cur == nullptr)
			return 0;
		int left = Height(cur->_pLeft);
		int right = Height(cur->_pRight);
		return left > right ? left + 1 : right + 1;
	}

	bool IsBalance()
	{
		return _isBalance(_root);
	}

	bool _isBalance(pNode root)
	{
		if (root == nullptr)
			return true;
		int left = Height(root->_pLeft);
		int right = Height(root->_pRight);

		if (root->_bf != (right - left))
		{
			cout << root->_data << "--->" << root->_bf << "  " << (right - left) << endl;
			return false;
		}


		return abs(root->_bf) < 2 && _isBalance(root->_pLeft)
			&& _isBalance(root->_pRight);
	}

private:
	pNode _root = nullptr;
};

void testAVL()
{
	
	int arr[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };

	AVLTree<int> avl;
	for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)
	{
		avl.insert(arr[i]);
		cout << "插入值:"<<arr[i] << "--->" << "平衡因子:"<<avl.IsBalance() << endl;
	}
	avl.Inorder();
}

int main()
{
	testAVL();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值