文章目录
一:AVL树的简介
1.1:AVL树的概念
【问题的显现】
二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序的二叉搜索树将退化为单支树(如下图所示),查找元素相当于在顺序表中搜索元素,效率低下.
【解决办法–>AVL树的提出】
当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度.
【注意】
一棵AVL树或者是空树是具有以下性质的二叉搜索树:
它的左右子树都是AVL树左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
【AVL树图示】
- 观察上图,可以看出这棵树中平衡因子的大小关系.
如果一棵二叉搜索树是高度平衡的,它就是AVL树.如果它有n个结点,其高度可保持在O(log2N) ,搜索时间复杂度O(log2N).
二:AVL树的插入
AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树.那么AVL树的插入过程可以分为两步:
2.1:按照二叉搜索树的方式插入新节点
bool insert(const T& val)
{
if (_root == nullptr)
{
_root = new Node(val);
return true;
}
pNode cur = _root;
pNode parent = nullptr;
while (cur)
{
parent = cur;
if (cur->_data > val)
{
cur = cur->_pLeft;
}
else if (cur->_data < val)
{
cur = cur->_pRight;
}
else
return false;
}
pNode newNode = new Node(val);
if (parent->_data > val)
parent->_pLeft = newNode;
else
parent->_pRight = newNode;
newNode->_pParent = parent;
cur = newNode;
//调整,保证平衡
while (parent)
{
//更新当前节点的平衡因子
if (parent->_pLeft == cur)
--parent->_bf;
else
++parent->_bf;
//检查平衡因子,_bf ==0, 高度没有发生变化,停止更新
if (parent->_bf == 0)
break;
//高度加1,更新此路径上的祖先节点的平衡因子
if (parent->_bf == 1 || parent->_bf == -1)
{
cur = parent;
parent = parent->_pParent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
//不平衡,需要调整
//左旋
if (parent->_bf == 2 && cur->_bf == 1)
{
RotateL(parent);
}
else if (parent->_bf == -2 && cur->_bf == -1)
{
//右旋
RotateR(parent);
}
else if (parent->_bf == -2 && cur->_bf == 1)
{
//左右双旋
RotateL(cur);
RotateR(parent);
}
else if (parent->_bf == 2 && cur->_bf == -1)
{
pNode subR = parent->_pRight;
pNode subRL = subR->_pLeft;
int bf = subRL->_bf;
//右左双旋
RotateR(cur);
RotateL(parent);
if (bf == 1)
{
subR->_bf = 0;
parent->_bf = -1;
}
else if (bf == -1)
{
parent->_bf = 0;
subR->_bf = 1;
}
}
//旋转结束,已经平衡,结束调整
break;
}
}
return true;
}
【总结】
- 1.先按照二叉搜索树的规则将节点插入到AVL树中
- 2.新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性
pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
- 1.如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
- 2.如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
此时:pParent的平衡因子可能有三种情况:0,正负1,正负2
- 1.如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功
- 2.如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新
- 3.如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理
2.2:AVL树的旋转
2.2.1:左旋
2.2.1:虚拟状态
-
AVL树原始图
其中的a,b,c表示的是子树,其树的高度是h -
现往c子树中插入某个新的结点后
-
调整完成后
2.2.2:实例
- 按照代码进行调整的过程
2.2.3:代码实现
- 左旋条件:parent->_bf== 2 && cur->_bf==1
void RotateL(pNode parent)
{
pNode subR = parent->_pRight;
pNode subRL = subR->_pLeft;
//旋转
subR->_pLeft = parent;
parent->_pRight = subRL;
//更新三叉链
//链接subRL 和parent
if (subRL)
subRL->_pParent = parent;
//链接subR 和 parent->_pParent
if (parent != _root)
{
pNode gParent = parent->_pParent;
//判断parent之前是parent->_pParent的那一边的节点
//把subR链接到对应的边
if (gParent->_pLeft == parent)
gParent->_pLeft = subR;
else
gParent->_pRight = subR;
//更新subR的pParent
subR->_pParent = gParent;
}
else
{
//如果parent是根,subR变成新的根
subR->_pParent = nullptr;
_root = subR;
}
//链接subR 和 parent
parent->_pParent = subR;
//更新平衡因子
subR->_bf = parent->_bf = 0;
}
2.3:右旋
2.3.1:虚拟状态
2.3.2:实例
2.3.3:代码实现
void RotateR(pNode parent)
{
pNode subL = parent->_pLeft;
pNode subLR = subL->_pRight;
// 1. 单向链接subL, subLR, parent
subL->_pRight = parent;
parent->_pLeft = subLR;
//2 向上链接subLR, parent
if (subLR)
subLR->_pParent = parent;
//3. 双向链接subL与pParent->_pParent
if (parent != _root)
{
pNode gParent = parent->_pParent;
if (gParent->_pLeft == parent)
gParent->_pLeft = subL;
else
gParent->_pRight = subL;
subL->_pParent = gParent;
}
else
{
subL->_pParent = nullptr;
_root = subL;
//更新根节点
}
//4. 向上链接parent, subL
parent->_pParent = subL;
//更新平衡因子
parent->_bf = subL->_bf = 0;
}
2.4:左右旋:先左旋再右旋
2.4.1:左右旋转图视
- 分析
- 1.在上图中值为60的结点的左子树中插入了一个新的结点
- 2.先完成一次左单旋
- 3.再完成一次右单旋
- 实例(两种不同的插入方式平衡因子的变动)
2.4.1:实现代码
- 条件:parent->_bf== 2 && cur->_bf==-1
if (parent->_bf == -2 && cur->_bf == 1)
{
pNode subL=parent->_left;
pNode subLR=subL->_right;
int bf=subLR->_bf;
RotateL(cur);
RotateR(parent);
if(bf==1){
parent->_bf=0;
subL->_bf=-1;
}else if(bf==-1){
parent->_bf=1;
subL->_bf=0;
}
}
2.5:右左旋:先右旋,再左旋
2.5.1:右左旋图视
- 分析
- 1.在60的右子树中插入了一个新的结点
- 2.先完成一次右单旋
- 3.再完成一次左单旋
- 实例(两种不同插入方式,导致的平衡因子的改变)
2.5.2:代码实现
- 条件:parent->_bf== 2 && sub->_bf ==-1
if (parent->_bf == 2 && cur->_bf == -1)
{
pNode subR = parent->_pRight;
pNode subRL = subR->_pLeft;
int bf = subRL->_bf;
//右左双旋
RotateR(cur);
RotateL(parent);
if (bf == 1)
{
subR->_bf = 0;
parent->_bf = -1;
}
else if (bf == -1)
{
parent->_bf = 0;
subR->_bf = 1;
}
}
三:实现AVL树
#include <iostream>
using namespace std;
template<class T>
//AVL树结点的定义
struct AVLNode
{
AVLNode(const T& val = T())
:_data(val)
, _pLeft(nullptr)
, _pRight(nullptr)
, _pParent(nullptr)
, _bf(0)
{}
T _data;
AVLNode<T>* _pLeft; //指向该节点的左孩子
AVLNode<T>* _pRight; //指向该节点的右孩子
AVLNode<T>* _pParent; //指向该节点的双亲结点
//平衡因子
int _bf;
};
template <class T>
class AVLTree
{
public:
typedef AVLNode<T> Node;
typedef Node* pNode;
bool insert(const T& val)
{
if (_root == nullptr)
{
_root = new Node(val);
return true;
}
pNode cur = _root;
pNode parent = nullptr;
while (cur)
{
parent = cur;
if (cur->_data > val)
{
cur = cur->_pLeft;
}
else if (cur->_data < val)
{
cur = cur->_pRight;
}
else
return false;
}
pNode newNode = new Node(val);
if (parent->_data > val)
parent->_pLeft = newNode;
else
parent->_pRight = newNode;
newNode->_pParent = parent;
cur = newNode;
//调整,保证平衡
while (parent)
{
//更新当前节点的平衡因子
if (parent->_pLeft == cur)
--parent->_bf;
else
++parent->_bf;
//检查平衡因子,_bf ==0, 高度没有发生变化,停止更新
if (parent->_bf == 0)
break;
//高度加1,更新此路径上的祖先节点的平衡因子
if (parent->_bf == 1 || parent->_bf == -1)
{
cur = parent;
parent = parent->_pParent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
//不平衡,需要调整
//左旋
if (parent->_bf == 2 && cur->_bf == 1)
{
RotateL(parent);
}
else if (parent->_bf == -2 && cur->_bf == -1)
{
//右旋
RotateR(parent);
}
else if (parent->_bf == -2 && cur->_bf == 1)
{
//左右双旋
pNode subL=parent->_left;
pNode subLR=subL->_right;
int bf=subLR->_bf;
RotateL(cur);
RotateR(parent);
if(bf==1){
parent->_bf=0;
subL->_bf=-1;
}else if(bf==-1){
parent->_bf=1;
subL->_bf=0;
}
}
else if (parent->_bf == 2 && cur->_bf == -1)
{
pNode subR = parent->_pRight;
pNode subRL = subR->_pLeft;
int bf = subRL->_bf;
//右左双旋
RotateR(cur);
RotateL(parent);
if (bf == 1)
{
subR->_bf = 0;
parent->_bf = -1;
}
else if (bf == -1)
{
parent->_bf = 0;
subR->_bf = 1;
}
}
//旋转结束,已经平衡,结束调整
break;
}
}
return true;
}
void RotateL(pNode parent)
{
pNode subR = parent->_pRight;
pNode subRL = subR->_pLeft;
//旋转
subR->_pLeft = parent;
parent->_pRight = subRL;
//更新三叉链
//链接subRL 和parent
if (subRL)
subRL->_pParent = parent;
//链接subR 和 parent->_pParent
if (parent != _root)
{
pNode gParent = parent->_pParent;
//判断parent之前是parent->_pParent的那一边的节点
//把subR链接到对应的边
if (gParent->_pLeft == parent)
gParent->_pLeft = subR;
else
gParent->_pRight = subR;
//更新subR的pParent
subR->_pParent = gParent;
}
else
{
//如果parent是根,subR变成新的根
subR->_pParent = nullptr;
_root = subR;
}
//链接subR 和 parent
parent->_pParent = subR;
//更新平衡因子
subR->_bf = parent->_bf = 0;
}
//右旋
void RotateR(pNode parent)
{
pNode subL = parent->_pLeft;
pNode subLR = subL->_pRight;
// 1. 单向链接subL, subLR, parent
subL->_pRight = parent;
parent->_pLeft = subLR;
//2 向上链接subLR, parent
if (subLR)
subLR->_pParent = parent;
//3. 双向链接subL与pParent->_pParent
if (parent != _root)
{
pNode gParent = parent->_pParent;
if (gParent->_pLeft == parent)
gParent->_pLeft = subL;
else
gParent->_pRight = subL;
subL->_pParent = gParent;
}
else
{
subL->_pParent = nullptr;
_root = subL;
//更新根节点
}
//4. 向上链接parent, subL
parent->_pParent = subL;
//更新平衡因子
parent->_bf = subL->_bf = 0;
}
/*
左右双旋的条件:parent->bf==-2;孩子结点bf==1;
先左旋,后右旋
左旋:RotateL(subL)
右旋:RotateR(parent)
*/
void Inorder()
{
_Inorder(_root);
cout << endl;
}
void _Inorder(pNode root)
{
if (root)
{
_Inorder(root->_pLeft);
cout << root->_data << " ";
_Inorder(root->_pRight);
}
}
int Height(pNode cur)
{
if (cur == nullptr)
return 0;
int left = Height(cur->_pLeft);
int right = Height(cur->_pRight);
return left > right ? left + 1 : right + 1;
}
bool IsBalance()
{
return _isBalance(_root);
}
bool _isBalance(pNode root)
{
if (root == nullptr)
return true;
int left = Height(root->_pLeft);
int right = Height(root->_pRight);
if (root->_bf != (right - left))
{
cout << root->_data << "--->" << root->_bf << " " << (right - left) << endl;
return false;
}
return abs(root->_bf) < 2 && _isBalance(root->_pLeft)
&& _isBalance(root->_pRight);
}
private:
pNode _root = nullptr;
};
void testAVL()
{
int arr[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
AVLTree<int> avl;
for (int i = 0; i < sizeof(arr) / sizeof(arr[0]); i++)
{
avl.insert(arr[i]);
cout << "插入值:"<<arr[i] << "--->" << "平衡因子:"<<avl.IsBalance() << endl;
}
avl.Inorder();
}
int main()
{
testAVL();
return 0;
}