Accept: 71 Submit: 301
Time Limit: 2000 mSec Memory Limit : 32768 KB
Problem Description
V11开了一家旅行社,众所周知现在商业竞争越来越激烈,为了更好地吸引消费者的眼球,v11决定制定到一条最短的旅游路线,路线的开始点和结束点必须是同一个地方。你的任务就是编写程序帮助v11寻找到这样的路线。
现在给出旅行路线图,图中有N个景点编号从1到N,有M条双向边编号从1到M。每条边包含三个数字A,B,C。表示这条路线连接景点A和景点B,他们之间的距离是C。为了简化问题,我们认为:每条旅游路线是一个至少包含三个点的简单回路。每条旅游路线的长度为它包含的所有边的距离之和。
现在的任务是:要求你编写程序寻找这样的最短路,给出它的路程长度,并输出同时存在有几个这样的最短路。
注意的是:
1.当两条最短路程中所经过的景点(不考虑顺序),完全相同时,才是相同的最短路程。否则,算作不同的最短路程。
2. 图的顶点序列中,除了第一个顶点和最后一个顶点外,其余顶点不重复出现的回路叫简单回路。(本题中将第一个顶点和最后一个顶点当作同一个景点)
3.本题中不存在自环。
Input
输入数据第一行包含一个整数T,表示测试数据的组数。对于每组测试数据:
第一行为两个整数n,m(1<n<100,1<m<5000),接下来m行,每行三个整数a,b,v(1<=a,b<=n,1<v<500),表示第i条路线连接景点A和景点B,距离是V。两个数字之间用空格隔开。
Output
Sample Input
Sample Output
Hint
样例一中,我们可以从景点1出发的路线:1->2->3->1;
可以从景点2出发的路线:2->3->1->2;
同样也可以从景点3出发的路线:3->1->2->3;
我们认为这3条路线所经过的景点集合为{1,2,3}所以他们是相同的路线。
Source
福州大学第九届程序设计竞赛#include<stdio.h>
#include<string.h>
#define M 107
#define inf 0x3f3f3f
using namespace std;
int g[M][M],dis[M][M],path[M][M],pre[M];
int n,m,num,mincircle,count;
void init()
{
for(int i=1; i<=n; i++)
{
for(int j=1; j<=n; j++)
{
g[i][j]=dis[i][j]=inf;
}
g[i][i]=dis[i][i]=0;
}
}
void dfs(int i,int j)
{
int k=path[i][j];
if(k==0)
{
pre[num++]=j;
return ;
}
dfs(i,k);
dfs(k,j);
}
void Floyd()
{
mincircle=inf;
for(int k=1; k<=n; k++)
{
for(int i=1; i<k; i++)//求环
for(int j=i+1; j<k; j++)
{
if(mincircle>dis[i][j]+g[i][k]+g[k][j])
{
mincircle=dis[i][j]+g[i][k]+g[k][j];
num=0;
pre[num++]=i;
dfs(i,j);
pre[num++]=k;
count=1;
}
else if(mincircle==dis[i][j]+g[i][k]+g[k][j])//记录次数
count++;
}
for(int i=1; i<=n; i++)//求最短路
for(int j=1; j<=n; j++)
if(dis[i][k]+dis[k][j]<dis[i][j])
{
dis[i][j]=dis[i][k]+dis[k][j];
path[i][j]=k;
}
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
int a,b,c;
for(int i=1; i<=m; i++)
{
scanf("%d%d%d",&a,&b,&c);
if(g[a][b]>c)
{
g[a][b]=g[b][a]=c;
dis[a][b]=dis[b][a]=c;
}
}
memset(path,0,sizeof(path));
Floyd();
if(mincircle==inf)
printf("-1\n");
else
printf("%d %d\n",mincircle,count);
}
return 0;
}