653. Two Sum IV - Input is a BST

题目描述:

Given a Binary Search Tree and a target number, return true if there exist two elements in the BST such that their sum is equal to the given target.

class TreeNode {
      int val;
      TreeNode left;
      TreeNode right;
      TreeNode(int x) { val = x; }
  }
思路一:

用一个哈希表保存下BST中结点的值,每次新插入一个结点的值的时候,都判断哈希表中是否已经包含了k-node.val。

时间复杂度为O(n),空间复杂度为O(n)。

class Solution {
    public boolean findTarget(TreeNode root, int k) {
        HashSet<Integer> set = new HashSet<>();
        return dfs(root, set, k);
    }

    public boolean dfs(TreeNode root, HashSet<Integer> set, int k)
    {
        if (root == null)
            return false;
        if (set.contains(k - root.val))
            return true;
        set.add(root.val);
        return dfs(root.left, set, k) || dfs(root.right, set, k);
    }
}
思路二:

对BST做前序遍历,得到一个排序后的数组,使用两个下标,一个从头开始,一个从尾开始,找是否存在和k。

时间复杂度O(n),空间复杂度O(n)。

class Solution {
    public boolean findTarget(TreeNode root, int k) {
        List<Integer> list = new ArrayList<>();
        inorder(root, list);
        for (int i = 0, j = list.size() - 1; i < j;)
        {
            if (list.get(i) + list.get(j) == k) return true;
            else if (list.get(i) + list.get(j) < k) i++;
            else j--;
        }
        return false;
    }

    public void inorder(TreeNode root, List<Integer> list)
    {
        if (root == null)
            return;
        inorder(root.left, list);
        list.add(root.val);
        inorder(root.right, list);
    }
}

思路三:

使用二叉查找的方法,对每一个结点,检查BST中是否存在k-node.val。

h是树的高度,最好情况下为logn,最差情况下为n。

时间复杂度为O(nlogn),空间复杂度为O(h)。

class Solution {
    public boolean findTarget(TreeNode root, int k) {
        return dfs(root, root, k);
    }

    public boolean dfs(TreeNode root, TreeNode curr, int k)
    {
        if (curr == null)
            return false;
        return search(root, curr, k - curr.val) || dfs(root, curr.left, k) || dfs(root, curr.right, k);
    }
    public boolean search(TreeNode root, TreeNode curr, int value)
    {
        if (root == null)
            return false;
        return (root.val == value && root != curr) || (root.val < value && search(root.right, curr, value)) || (root.val > value && search(root.left, curr, value));
    }
}






翻译 This is Elsevier's new document class for typeset journal articles, elsarticle.cls. It is now accepted for submitted articles, both in Elsevier's electronic submission system and elsewhere. Elsevier's previous document class for typeset articles, elsart.cls, is now over 10 years old. It has been replaced with this newly written document class elsarticle.cls, which has been developed for Elsevier by the leading TeX developer STM Document Engineering Pvt Ltd. elsarticle.cls is based upon the standard LaTeX document class article.cls. It uses natbib.sty for bibliographical references. Bugs and problems with elsarticle.cls may be reported to the developers of the class via elsarticle@stmdocs.in. The file manifest.txt provides a list of the files in the elsarticle bundle. The following are the main files available: - elsarticle.dtx, the dtx file - elsdoc.pdf, the user documentation - elsarticle-template-num.tex, template file for numerical citations - elsarticle-template-harv.tex, template file for name-year citations - elsarticle-template-num-names.tex, template file for numerical citations + new natbib option. Eg. Jones et al. [21] - elsarticle-num.bst, bibliographic style for numerical references - elsarticle-harv.bst, bibliographic style for name-year references - elsarticle-num-names.bst, bibliographic style for numerical referencces + new natbib option for citations. To extract elsarticle.cls from *.dtx: latex elsarticle.ins The documentation file is elsdoc.tex in the contrib directory. To compile it: 1. pdflatex elsdoc 2. pdflatex elsdoc 3. pdflatex elsdoc
最新发布
06-01
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值