《算法笔记》4.3小节——算法初步->递归 问题 D: 八皇后

问题 D: 八皇后

时间限制 : 1.000 sec 内存限制 : 32 MB

题目描述

会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2…b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。

输入

第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)

输出

输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。

样例输入
3
6
4
25
样例输出
25713864
17582463
36824175
#include<iostream>


using namespace std;

bool hashtable[9];
int method[93];
int counter = 0;
int p[9];
int sum = 0;

void generatedP(int index) {
    if (index == 9) {
        counter++;
        method[counter] = sum;
        return;
    }
    for (int i = 1; i <= 8; ++i) {//行号遍历
        if (!hashtable[i]) {
            bool flag = true;
            for (int j = 1; j < index; ++j) {
                if (abs(index - j) == abs(p[j] - i)) {
                    flag = false;
                    break;
                }
            }
            if (flag) {
                p[index] = i;
                hashtable[i] = true;
                sum = sum * 10 + i;
                generatedP(index + 1);
                sum = (sum - i) / 10;
                hashtable[i] = false;
            }
        }
    }

}

int main() {
    int n;
    generatedP(1);
    while (cin >> n) {
        int a;
        for (int i = 0; i < n; ++i) {
            cin >> a;
            cout << method[a] << endl;
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XdpCs

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值