问题 D: 八皇后
时间限制 : 1.000 sec 内存限制 : 32 MB
题目描述
会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2…b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
输入
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)
输出
输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。
样例输入
3
6
4
25
样例输出
25713864
17582463
36824175
#include<iostream>
using namespace std;
bool hashtable[9];
int method[93];
int counter = 0;
int p[9];
int sum = 0;
void generatedP(int index) {
if (index == 9) {
counter++;
method[counter] = sum;
return;
}
for (int i = 1; i <= 8; ++i) {//行号遍历
if (!hashtable[i]) {
bool flag = true;
for (int j = 1; j < index; ++j) {
if (abs(index - j) == abs(p[j] - i)) {
flag = false;
break;
}
}
if (flag) {
p[index] = i;
hashtable[i] = true;
sum = sum * 10 + i;
generatedP(index + 1);
sum = (sum - i) / 10;
hashtable[i] = false;
}
}
}
}
int main() {
int n;
generatedP(1);
while (cin >> n) {
int a;
for (int i = 0; i < n; ++i) {
cin >> a;
cout << method[a] << endl;
}
}
return 0;
}