Stack is one of the most fundamental data structures, which is based on the principle of Last In First Out (LIFO). The basic operations include Push (inserting an element onto the top position) and Pop (deleting the top element). Now you are supposed to implement a stack with an extra operation: PeekMedian – return the median value of all the elements in the stack. With N elements, the median value is defined to be the (N/2)-th smallest element if N is even, or ((N+1)/2)-th if N is odd.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤105). Then N lines follow, each contains a command in one of the following 3 formats:
Push key
Pop
PeekMedian
where key is a positive integer no more than 105.
Output Specification:
For each Push command, insert key into the stack and output nothing. For each Pop or PeekMedian command, print in a line the corresponding returned value. If the command is invalid, print Invalid instead.
Sample Input:
17
Pop
PeekMedian
Push 3
PeekMedian
Push 2
PeekMedian
Push 1
PeekMedian
Pop
Pop
Push 5
Push 4
PeekMedian
Pop
Pop
Pop
Pop
Sample Output:
Invalid
Invalid
3
2
2
1
2
4
4
5
3
Invalid
#include <cstdio>
#include <stack>
#include <set>
using namespace std;
stack<int> st;
multiset<int> up, down;
void adjust() {
while (up.size() > down.size()) {
auto it = up.begin();
down.insert(*it);
up.erase(it);
}
while (down.size() > up.size() + 1) {
auto it = down.end();
it--;
up.insert(*it);
down.erase(it);
}
}
int main() {
int n, k;
char token[20];
scanf("%d", &n);
for (int i = 0; i < n; ++i) {
scanf("%s", token);
if (token[1] == 'o') {
if (st.empty())
printf("Invalid\n");
else {
int x = st.top();
printf("%d\n", x);
st.pop();
auto it = down.end();
it--;
if (x <= *it)
down.erase(down.find(x));
else
up.erase(up.find(x));
adjust();
}
} else if (token[1] == 'u') {
scanf("%d", &k);
st.push(k);
if (down.empty() || *(--down.end()) >= k)
down.insert(k);
else
up.insert(k);
adjust();
} else if (token[1] == 'e') {
if (st.empty())
printf("Invalid\n");
else {
auto it = down.end();
it--;
printf("%d\n", *it);
}
}
}
return 0;
}
本文介绍了一种实现带有中位数查询功能的栈的方法,利用两个多集(上界多集和下界多集)来保持元素的平衡,以在常数时间内返回中位数。代码示例展示了如何处理Push、Pop和PeekMedian操作,并在输入数据中进行测试,确保了栈的操作正确性和中位数计算的准确性。
368

被折叠的 条评论
为什么被折叠?



