1.4 多项式拟合实例

1.4 多项式拟合实例

多项式拟合(Polynomial Fitting)就是采用多项式去拟合数据点。

导入必要的模块

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler#数据标准化处理
from sklearn.preprocessing import PolynomialFeatures#生成特征多项式
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

生成数据

生成100个训练样本

# 设置随机种子
np.random.seed(34)

sample_num = 100

# 从-5到5中随机抽取100个浮点数
x_train = np.random.uniform(-5, 5, size=sample_num)

# 将x从shape为(sample_num,)变为(sample_num,1)
X_train = x_train.reshape(-1,1)

# 生成y值的实际函数
y_train_real = 0.5 * x_train ** 3 + x_train ** 2 + 2 * x_train + 1

# 生成误差值
err_train = np.random.normal(0, 5, size=sample_num)

# 真实y值加上误差值,得到样本的y值
y_train = y_train_real + err_train

# 画出样本的散点图
plt.scatter(x_train, y_train, marker='o', color='g', label='train dataset')

# 画出实际函数曲线
plt.plot(np.sort(x_train), y_train_real[np.argsort(x_train)], color='b', label='real curve')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

生成测试集

# 设置随机种子
np.random.seed(12)

sample_num = 100

# 从-5到5中随机抽取100个浮点数
x_test = np.random.uniform(-5, 5, size=sample_num)

# 将x从shape为(sample_num,)变为(sample_num,1)
X_test = x_test.reshape(-1,1)

# 生成y值的实际函数
y_test_real = 0.5 * x_test ** 3 + x_test ** 2 + 2 * x_test + 1

# 生成误差值
err_test = np.random.normal(0, 5, size=sample_num)

# 真实y值加上误差值,得到样本的y值
y_test = y_test_real + err_test

# 画出样本的散点图
plt.scatter(x_test, y_test, marker='o', color='c', label='test dataset')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

问题:假如我们不知道生成样本的函数,如何用线性回归模型拟合这些样本?

多项式模型拟合

1阶线性模型拟合

# 线性回归模型训练
reg1 = LinearRegression()
reg1.fit(X_train, y_train)

# 模型预测
y_train_pred1 = reg1.predict(X_train)

# 画出样本的散点图
plt.scatter(x_train, y_train, marker='o', color='g', label='train dataset')

# 画出实际函数曲线
plt.plot(np.sort(x_train), y_train_real[np.argsort(x_train)], color='b', label='real curve')

# 画出预测函数曲线
plt.plot(np.sort(x_train), y_train_pred1[np.argsort(x_train)], color='r', label='prediction curve')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

直线太过简单,不能很好地描述数据的变化关系。

3阶多项式模型拟合

使用到的api:

创建多项式特征sklearn.preprocessing.PolynomialFeatures

用到的参数:

  • degree:设置多项式特征的阶数,默认2。

  • include_bias:是否包括偏置项,默认True。

使用fit_transform函数对数据做处理。

特征标准化sklearn.preprocessing.StandardScaler(减去均值除再除以标准差)

使用fit_transform函数对数据做处理。

# 生成多项式数据
poly = PolynomialFeatures(degree=3, include_bias=False)
X_train_poly = poly.fit_transform(X_train)

# 数据标准化(减均值除标准差)
scaler  = StandardScaler()
X_train_poly_scaled = scaler.fit_transform(X_train_poly)

# 线性回归模型训练
reg3 = LinearRegression()
reg3.fit(X_train_poly_scaled, y_train)

# 模型预测
y_train_pred3 = reg3.predict(X_train_poly_scaled)

# 画出样本的散点图
plt.scatter(x_train, y_train, marker='o', color='g', label='train dataset')

# 画出实际函数曲线
# plt.plot(np.sort(x_train), y_train_real[np.argsort(x_train)], color='b', label='real curve')

# 画出预测函数曲线
plt.plot(np.sort(x_train), y_train_pred3[np.argsort(x_train)], color='r', label='prediction curve')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

曲线拟合得非常不错。

10阶多项式模型拟合

# 生成多项式数据
poly = PolynomialFeatures(degree=10, include_bias=False)
X_train_poly = poly.fit_transform(X_train)

# 数据标准化(减均值除标准差)
scaler  = StandardScaler()
X_train_poly_scaled = scaler.fit_transform(X_train_poly)

# 线性回归模型训练
reg10 = LinearRegression()
reg10.fit(X_train_poly_scaled, y_train)

# 模型预测
y_train_pred10 = reg10.predict(X_train_poly_scaled)

# 画出样本的散点图
plt.scatter(x_train, y_train, marker='o', color='g', label='train dataset')

# 画出实际函数曲线
plt.plot(np.sort(x_train), y_train_real[np.argsort(x_train)], color='b', label='real curve')

# 画出预测函数曲线
plt.plot(np.sort(x_train), y_train_pred10[np.argsort(x_train)], color='r', label='prediction curve')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

曲线拟合得也还可以。

30阶多项式模型拟合

# 生成多项式数据
poly = PolynomialFeatures(degree=30, include_bias=False)
X_train_poly = poly.fit_transform(X_train)

# 数据标准化(减均值除标准差)
scaler  = StandardScaler()
X_train_poly_scaled = scaler.fit_transform(X_train_poly)

# 线性回归模型训练
reg30 = LinearRegression()
reg30.fit(X_train_poly_scaled, y_train)

# 模型预测
y_train_pred30 = reg30.predict(X_train_poly_scaled)

# 画出样本的散点图
plt.scatter(x_train, y_train, marker='o', color='g', label='train dataset')

# 画出实际函数曲线
# plt.plot(np.sort(x_train), y_train_real[np.argsort(x_train)], color='b', label='real curve')

# 画出预测函数曲线
plt.plot(np.sort(x_train), y_train_pred30[np.argsort(x_train)], color='r', label='prediction curve')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

曲线变得弯曲而复杂,把训练样本点的噪声变化也学习到了。

指标对比

# 计算MSE
mse1 = mean_squared_error(y_train_pred1, y_train)
mse3 = mean_squared_error(y_train_pred3, y_train)
mse10 = mean_squared_error(y_train_pred10, y_train)
mse30 = mean_squared_error(y_train_pred30, y_train)

# 打印结果
print('MSE:')
print('1 order polynomial: {:.2f}'.format(mse1))
print('3 order polynomial: {:.2f}'.format(mse3))
print('10 order polynomial: {:.2f}'.format(mse10))
print('30 order polynomial: {:.2f}'.format(mse30))

得到的MSE如下:

MSE:
1 order polynomial: 149.92
3 order polynomial: 24.32
10 order polynomial: 23.64
30 order polynomial: 15.05

训练集mse指标从好到坏的模型是:30阶多项式、10阶多项式、3阶多项式、1阶多项式。

测试集检验

1阶线性模型预测

# 模型预测
y_test_pred1 = reg1.predict(X_test)

# 画出样本的散点图
plt.scatter(x_test, y_test, marker='o', color='c', label='test dataset')

# 画出预测函数曲线
plt.plot(np.sort(x_test), y_test_pred1[np.argsort(x_test)], color='r', label='1 order')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

3阶多项式模型预测

# 生成多项式数据
poly = PolynomialFeatures(degree=3, include_bias=False)
X_test_poly = poly.fit_transform(X_test)

# 数据标准化(减均值除标准差)
scaler  = StandardScaler()
X_test_poly_scaled = scaler.fit_transform(X_test_poly)

# 模型预测
y_test_pred3 = reg3.predict(X_test_poly_scaled)

# 画出样本的散点图
plt.scatter(x_test, y_test, marker='o', color='c', label='test dataset')

# 画出预测函数曲线
plt.plot(np.sort(x_test), y_test_pred3[np.argsort(x_test)], color='r', label='3 order')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

10阶多项式模型预测

# 生成多项式数据
poly = PolynomialFeatures(degree=10, include_bias=False)
X_test_poly = poly.fit_transform(X_test)

# 数据标准化(减均值除标准差)
scaler  = StandardScaler()
X_test_poly_scaled = scaler.fit_transform(X_test_poly)

# 模型预测
y_test_pred10 = reg10.predict(X_test_poly_scaled)

# 画出样本的散点图
plt.scatter(x_test, y_test, marker='o', color='c', label='test dataset')

# 画出预测函数曲线
plt.plot(np.sort(x_test), y_test_pred10[np.argsort(x_test)], color='r', label='10 order')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

30阶多项式模型预测

# 生成多项式数据
poly = PolynomialFeatures(degree=30, include_bias=False)
X_test_poly = poly.fit_transform(X_test)

# 数据标准化(减均值除标准差)
scaler  = StandardScaler()
X_test_poly_scaled = scaler.fit_transform(X_test_poly)

# 模型预测
y_test_pred30 = reg30.predict(X_test_poly_scaled)

# 画出样本的散点图
plt.scatter(x_test, y_test, marker='o', color='c', label='test dataset')

# 画出预测函数曲线
plt.plot(np.sort(x_test), y_test_pred30[np.argsort(x_test)], color='r', label='30 order')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

指标对比

# 计算MSE
mse1 = mean_squared_error(y_train_pred1, y_train)
mse3 = mean_squared_error(y_train_pred3, y_train)
mse10 = mean_squared_error(y_train_pred10, y_train)
mse30 = mean_squared_error(y_train_pred30, y_train)

# 打印结果
print('MSE:')
print('1 order polynomial: {:.2f}'.format(mse1))
print('3 order polynomial: {:.2f}'.format(mse3))
print('10 order polynomial: {:.2f}'.format(mse10))
print('30 order polynomial: {:.2f}'.format(mse30))

训练集mse指标从好到坏的模型是:30阶多项式、10阶多项式、3阶多项式、1阶多项式。

测阶线性模型预测试集检验

1阶线性模型预测

# 模型预测
y_test_pred1 = reg1.predict(X_test)

# 画出样本的散点图
plt.scatter(x_test, y_test, marker='o', color='c', label='test dataset')

# 画出预测函数曲线
plt.plot(np.sort(x_test), y_test_pred1[np.argsort(x_test)], color='r', label='1 order')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

3阶多项式模型预测

# 生成多项式数据
poly = PolynomialFeatures(degree=3, include_bias=False)
X_test_poly = poly.fit_transform(X_test)

# 数据标准化(减均值除标准差)
scaler  = StandardScaler()
X_test_poly_scaled = scaler.fit_transform(X_test_poly)

# 模型预测
y_test_pred3 = reg3.predict(X_test_poly_scaled)

# 画出样本的散点图
plt.scatter(x_test, y_test, marker='o', color='c', label='test dataset')

# 画出预测函数曲线
plt.plot(np.sort(x_test), y_test_pred3[np.argsort(x_test)], color='r', label='3 order')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

10阶多项式模型预测

# 生成多项式数据
poly = PolynomialFeatures(degree=10, include_bias=False)
X_test_poly = poly.fit_transform(X_test)

# 数据标准化(减均值除标准差)
scaler  = StandardScaler()
X_test_poly_scaled = scaler.fit_transform(X_test_poly)

# 模型预测
y_test_pred10 = reg10.predict(X_test_poly_scaled)

# 画出样本的散点图
plt.scatter(x_test, y_test, marker='o', color='c', label='test dataset')

# 画出预测函数曲线
plt.plot(np.sort(x_test), y_test_pred10[np.argsort(x_test)], color='r', label='10 order')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

30阶多项式模型预测

# 生成多项式数据
poly = PolynomialFeatures(degree=30, include_bias=False)
X_test_poly = poly.fit_transform(X_test)

# 数据标准化(减均值除标准差)
scaler  = StandardScaler()
X_test_poly_scaled = scaler.fit_transform(X_test_poly)

# 模型预测
y_test_pred30 = reg30.predict(X_test_poly_scaled)

# 画出样本的散点图
plt.scatter(x_test, y_test, marker='o', color='c', label='test dataset')

# 画出预测函数曲线
plt.plot(np.sort(x_test), y_test_pred30[np.argsort(x_test)], color='r', label='30 order')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.show()

在这里插入图片描述

指标对比

# 计算MSE
mse1 = mean_squared_error(y_test_pred1, y_test)
mse3 = mean_squared_error(y_test_pred3, y_test)
mse10 = mean_squared_error(y_test_pred10, y_test)
mse30 = mean_squared_error(y_test_pred30, y_test)

# 打印结果
print('MSE:')
print('1 order polynomial: {:.2f}'.format(mse1))
print('3 order polynomial: {:.2f}'.format(mse3))
print('10 order polynomial: {:.2f}'.format(mse10))
print('30 order polynomial: {:.2f}'.format(mse30))

得到的MSE如下:

MSE:
1 order polynomial: 191.05
3 order polynomial: 39.71
10 order polynomial: 41.00
30 order polynomial: 85.45

测试集mse指标从好到坏的模型是:3阶多项式、10阶多项式、30阶多项式、1阶多项式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值