- 博客(12)
- 资源 (1)
- 收藏
- 关注
原创 《动手学深度学习》学习总结
,我学习《动手学深度学习》的效率和激情在学习基础部分和计算机视觉部分时还能保持不减,但在进入第三阶段学习自然语言处理开始似乎逐渐冷却到了一个低谷,第三个阶段也受到中秋假期的影响吧,放纵了下,此外有时还会怀疑自己。如果说刚开始,闲暇对于我的效用就是0,学习《动手学深度学习》的效用是100,而现在学习本书的效用对于我来说可能已经降到60,闲暇或者学习其他东西上升到40。本来计划第四阶段学习优化算法部分,但这一部分应该是会涉及较多的数学,但以自己目前心境,已经无法继续潜心学习这一部分了。
2022-09-17 13:29:14 1204 3
原创 《动手学深度学习》6、10(自然语言处理)学习小结
有很多maxnet框架细节要注意,比如循环神经网络的forward要把input进行转置等。有的地方需要对模型输入输出的形状很明晰,比如你在用注意力机制要concat的时候。
2022-09-17 12:41:02 360
原创 《数学建模简明教程--基于python》学习笔记-第四章-微分方程-课后习题解答
先纵览一下题目,主要分为常微分方程的编程练习和建模两部分。关于 scipy.integrate下的odeint方法关于sympy库的官方文档详细程序编写流程请看 1.编程练习-例 4.3 马尔萨斯人口改进模型👨👩👧👦详细建模流程请看 2.应用练习-题1:介壳虫,澳洲瓢虫🐞和DDT 和 3.拓展练习-艾滋病发展模型💉👯👪求解失败。因为这个微分方程是一阶非线性的齐次微分方程,对于非线性的微分方程很少会有解析解,所以我猜测这个微分方程要么没有解析解,要么就是这个模块求不出来。.........
2022-06-03 16:44:03 3065
原创 常微分方程自学感慨
自从上次在写完《数学建模简明教程-基于python》第六章-线性规划的课后习题后,我就开始思考接下来到底写那一章了,感觉纠结了很久。我把第七章非线性规划和第四章的常微分方程的部分都学习了一遍,然后决定先写常微分方程,可能是在程序或模型书写上,非线性规划似乎和线性规划没有多大区别,如果又和线性规划一样写模型求解可能会有点重复。所以我决定先学习常微分方程,有一点陌生,也有一点神秘感,也许是对新领域的渴望促使我选择先搞定常微分方程这一章,但是作为一个大二会计专业的学生,是没有学过常微分方程的。一切都...
2022-05-14 19:33:22 1117
原创 用matplotlib复现一幅看到的图
文章目录当你看到一幅精美的图时,你想到了什么?首先分别出图片的主要组成要素一、 获取三条线x和y的数据1. 分析下书上的数据2. 使用numpy_financial计算不同折现率下的净现值二、 颜色1.通过画图获取颜色2. 既然已经获取了线条的xy以及颜色,那就来画图吧,然后在一点点加精3 填充区域颜色三、 xytick和xylabel1. 让上边和右边的边框线消失3. 设置x轴的位置。4. 调整刻度间隔,并在xtick后添加"%",在ytick前添加"$"。5. 添加xylabel四、添加黑点和虚线五、添
2022-04-26 23:07:19 709
原创 《数学建模简明教程--基于python》学习笔记-第六章-线性规划模型-课后习题解答
关于cvxpy的坑你要知道安装坑(求解器坑)见2.1官方文档坑官方文档的另一种打开方式:cvxpy官方文档基本函数目录非负约束条件坑非负约束条件可以在定义决策变量时直接添加,也可以在约束条件中添加。但是整数的非负约束一定要记得在约束条件中添加!目标函数(obj)位置坑obj应该在你定义完相关问题数据和变量之后定义准备工作安装cvxpy库# !pip install cvxpy# !pip install cvxopt cvxopt库提供GLPK等求解器,如果你使用jupy
2022-04-09 23:30:21 3356 2
原创 《数学建模简明教程--基于python》学习笔记-第三章-插值与拟合-课后习题解答
文章目录1 分析插值与拟合的联系与区别2 给出函数的n个节点,然后插值2.1 y=sin(x),0⩽x⩽2πy=sin(x),0\leqslant x\leqslant 2\piy=sin(x),0⩽x⩽2π2.2 y=(1−x2)1/2,−1⩽x⩽1y=(1-x^2)^{1/2},-1\leqslant x\leqslant1y=(1−x2)1/2,−1⩽x⩽12.3 y=cos10x,−4⩽x⩽4y= \cos^{10}x,-4\leqslant x\leqslant4y=cos10x,−4⩽x⩽42
2022-04-03 20:29:02 3434
原创 《数学建模简明教程--基于python》学习笔记-第二章-绘图与解方程组-课后习题解答
先纵览一下思考与练习的题目,可以发现主要是画图和解方程方面的题目。下面是我给出的解答。准备工作首先导入几乎每题都需要用的库,并进行绘图和科学计数法的设置。其他模块在使用时再导入。import matplotlib.pyplot as pltimport numpy as npplt.rcParams['font.sans-serif']=['SimHei'] # 在图中显示中文字体plt.rcParams['axes.unicode_minus'] = False # 在图中显示负号
2022-03-26 00:05:04 3332
清除系统垃圾文件.bat
2010-06-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人