机器学习周记(第三十九周:语义分割)2024.5.13~2024.5.19

目录

摘要

ABSTRACT

1 DeepLabV3+训练部分

1.1 训练文件详解:

1.2 LOSS解析

2 训练个人数据集

2.1 数据集准备

2.2 数据集处理

2.3 开始训练

2.4 预测结果

3 完整代码


摘要

  本周继续了语义分割的学习,主要学习了DeepLabV3+训练部分的内容以及相关代码的实现。DeepLabV3+训练所使用的数据集主要采用VOC格式,包含样本和标签。样本一般为RGB图像,而标签为灰度图,其中每一个像素点的内容是一个数字,比如0、1、2、3、4、5……,代表这个像素点所属的类别。DeepLabV3+训练所使用的损失主要为Cross Entropy Loss或者Dice Loss,其中Dice系数为评价指标,所以计算损失需要使用Dice Loss=1-Dice。最后通过替换训练文件,可以使用DeepLabV3+训练自己的数据集。

ABSTRACT

This week, We continued my study of semantic segmentation, focusing mainly on the training aspects of DeepLabV3+ and the implementation of the related code. The dataset used for training DeepLabV3+ primarily follows the VOC format, which includes samples and labels. The samples are typically RGB images, while the labels are grayscale images where each pixel's value is a number, such as 0, 1, 2, 3, 4, 5, etc., representing the class to which that pixel belongs. The losses used for training DeepLabV3+ are mainly Cross Entropy Loss or Dice Loss, with the Dice coefficient serving as the evaluation metric, so the loss calculation requires using Dice Loss = 1 - Dice. Finally, by replacing the training files, DeepLabV3+ can be used to train on your own dataset.

1 DeepLabV3+训练部分

1.1 训练文件详解:

所使用的训练文件采用VOC的格式。

语义分割模型训练的文件分为两部分。

第一部分是原图,像这样:

第二部分标签,像这样:

原图就是普通的RGB图像,标签就是灰度图或者8位彩色图。

原图的shape为(height, width, 3),标签的shape就是(height, width),对于标签而言,每个像素点的内容是一个数字,比如0、1、2、3、4、5……,代表这个像素点所属的类别。

语义分割的工作就是对原始的图片的每一个像素点进行分类,所以通过预测结果中每个像素点属于每个类别的概率与标签对比,可以对网络进行训练。

1.2 LOSS解析

本文所使用的LOSS由两部分组成:
① Cross Entropy Loss
② Dice Loss

Cross Entropy Loss就是普通的交叉熵损失,当语义分割平台利用Softmax对像素点进行分类的时候,进行使用。

Dice loss将语义分割的评价指标作为LossDice系数是一种集合相似度度量函数,通常用于计算两个样本的相似度,取值范围在[0,1]。

计算公式如下:

s=\frac{2|X\cap Y|}{|X|+|Y|}

就是预测结果和真实结果的交乘上2,除上预测结果加上真实结果。其值在0-1之间。越大表示预测结果和真实结果重合度越大。所以Dice系数是越大越好。

如果作为LOSS的话是越小越好,所以使得Dice loss = 1 - Dice,就可以将Loss作为语义分割的损失了。

实现代码如下:

import torch
import torch.nn.functional as F  
import numpy as np
from torch import nn
from torch.autograd import Variable
from random import shuffle
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
from PIL import Image
import cv2

def CE_Loss(inputs, target, num_classes=21):
    n, c, h, w = inputs.size()
    nt, ht, wt = target.size()
    if h != ht and w != wt:
        inputs = F.interpolate(inputs, size=(ht, wt), mode="bilinear", align_corners=True)

    temp_inputs = inputs.transpose(1, 2).transpose(2, 3).contiguous().view(-1, c)
    temp_target = target.view(-1)

    CE_loss  = nn.NLLLoss(ignore_index=num_classes)(F.log_softmax(temp_inputs, dim = -1), temp_target)
    return CE_loss

def Dice_loss(inputs, target, beta=1, smooth = 1e-5):
    n, c, h, w = inputs.size()
    nt, ht, wt, ct = target.size()
    
    if h != ht and w != wt:
        inputs = F.interpolate(inputs, size=(ht, wt), mode="bilinear", align_corners=True)
    temp_inputs = torch.softmax(inputs.transpose(1, 2).transpose(2, 3).contiguous().view(n, -1, c),-1)
    temp_target = target.view(n, -1, ct)

    #--------------------------------------------#
    #   计算dice loss
    #--------------------------------------------#
    tp = torch.sum(temp_target[...,:-1] * temp_inputs, axis=[0,1])
    fp = torch.sum(temp_inputs                       , axis=[0,1]) - tp
    fn = torch.sum(temp_target[...,:-1]              , axis=[0,1]) - tp

    score = ((1 + beta ** 2) * tp + smooth) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
    dice_loss = 1 - torch.mean(score)
    return dice_loss

2 训练个人数据集

首先前往Github下载代码的仓库,下载完后利用解压软件解压,之后用pycharm打开文件夹。

注意打开的根目录必须正确,否则相对目录不正确的情况下,代码将无法运行。

注意打开后的根目录是文件存放的目录。

代码仓库:GitHub - bubbliiiing/deeplabv3-plus-pytorch: 这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

2.1 数据集准备

这里使用VOC格式进行训练,训练前需要自己制作好数据集,如果没有自己的数据集,可以通过Github连接下载VOC12+07的数据集尝试下。

① 训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中
② 训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的SegmentationClass中

2.2 数据集处理

在完成数据集的摆放之后,我们需要对数据集进行下一步的处理,目的是获得训练用的train.txt以及val.txt,需要用到根目录下的voc_annotation.py

如果下载的是仓库作者上传的voc数据集,那么就不需要运行根目录下的voc_annotation.py

如果是自己制作的数据集,那么需要运行根目录下的voc_annotation.py,从而生成train.txtval.txt

2.3 开始训练

通过voc_annotation.py我们已经生成了train.txt以及val.txt,此时我们可以开始训练了。训练的参数较多,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的num_classes

num_classes用于指向检测类别的个数+1,训练自己的数据集必须要修改。

除此之外在train.py文件夹下面,选择自己要使用的主干模型backbone、预训练权重model_path和下采样因子downsample_factor。预训练模型需要和主干模型相对应。下采样因子可以在816中选择。

然后就可以开始训练了:

2.4 预测结果

训练结果预测需要用到两个文件,分别是deeplab.pypredict.py

我们首先需要去deeplab.py里面修改model_path以及num_classes,这两个参数必须要修改。

model_path指向训练好的权值文件,在logs文件夹里。

num_classes指向检测类别的个数+1。

完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可预测。

3 完整代码

import datetime
import os
from functools import partial

import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim as optim
from torch.utils.data import DataLoader

from nets.deeplabv3_plus import DeepLab
from nets.deeplabv3_training import (get_lr_scheduler, set_optimizer_lr,
                                     weights_init)
from utils.callbacks import EvalCallback, LossHistory
from utils.dataloader import DeeplabDataset, deeplab_dataset_collate
from utils.utils import (download_weights, seed_everything, show_config,
                         worker_init_fn)
from utils.utils_fit import fit_one_epoch

'''
训练自己的语义分割模型一定需要注意以下几点:
1、训练前仔细检查自己的格式是否满足要求,该库要求数据集格式为VOC格式,需要准备好的内容有输入图片和标签
   输入图片为.jpg图片,无需固定大小,传入训练前会自动进行resize。
   灰度图会自动转成RGB图片进行训练,无需自己修改。
   输入图片如果后缀非jpg,需要自己批量转成jpg后再开始训练。

   标签为png图片,无需固定大小,传入训练前会自动进行resize。
   由于许多同学的数据集是网络上下载的,标签格式并不符合,需要再度处理。一定要注意!标签的每个像素点的值就是这个像素点所属的种类。
   网上常见的数据集总共对输入图片分两类,背景的像素点值为0,目标的像素点值为255。这样的数据集可以正常运行但是预测是没有效果的!
   需要改成,背景的像素点值为0,目标的像素点值为1。
   如果格式有误,参考:https://github.com/bubbliiiing/segmentation-format-fix

2、损失值的大小用于判断是否收敛,比较重要的是有收敛的趋势,即验证集损失不断下降,如果验证集损失基本上不改变的话,模型基本上就收敛了。
   损失值的具体大小并没有什么意义,大和小只在于损失的计算方式,并不是接近于0才好。如果想要让损失好看点,可以直接到对应的损失函数里面除上10000。
   训练过程中的损失值会保存在logs文件夹下的loss_%Y_%m_%d_%H_%M_%S文件夹中
   
3、训练好的权值文件保存在logs文件夹中,每个训练世代(Epoch)包含若干训练步长(Step),每个训练步长(Step)进行一次梯度下降。
   如果只是训练了几个Step是不会保存的,Epoch和Step的概念要捋清楚一下。
'''
if __name__ == "__main__":
    #---------------------------------#
    #   Cuda    是否使用Cuda
    #           没有GPU可以设置成False
    #---------------------------------#
    Cuda            = True
    #----------------------------------------------#
    #   Seed    用于固定随机种子
    #           使得每次独立训练都可以获得一样的结果
    #----------------------------------------------#
    seed            = 11
    #---------------------------------------------------------------------#
    #   distributed     用于指定是否使用单机多卡分布式运行
    #                   终端指令仅支持Ubuntu。CUDA_VISIBLE_DEVICES用于在Ubuntu下指定显卡。
    #                   Windows系统下默认使用DP模式调用所有显卡,不支持DDP。
    #   DP模式:
    #       设置            distributed = False
    #       在终端中输入    CUDA_VISIBLE_DEVICES=0,1 python train.py
    #   DDP模式:
    #       设置            distributed = True
    #       在终端中输入    CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py
    #---------------------------------------------------------------------#
    distributed     = False
    #---------------------------------------------------------------------#
    #   sync_bn     是否使用sync_bn,DDP模式多卡可用
    #---------------------------------------------------------------------#
    sync_bn         = False
    #---------------------------------------------------------------------#
    #   fp16        是否使用混合精度训练
    #               可减少约一半的显存、需要pytorch1.7.1以上
    #---------------------------------------------------------------------#
    fp16            = False
    #-----------------------------------------------------#
    #   num_classes     训练自己的数据集必须要修改的
    #                   自己需要的分类个数+1,如2+1
    #-----------------------------------------------------#
    num_classes     = 21
    #---------------------------------#
    #   所使用的的主干网络:
    #   mobilenet
    #   xception
    #---------------------------------#
    backbone        = "mobilenet"
    #----------------------------------------------------------------------------------------------------------------------------#
    #   pretrained      是否使用主干网络的预训练权重,此处使用的是主干的权重,因此是在模型构建的时候进行加载的。
    #                   如果设置了model_path,则主干的权值无需加载,pretrained的值无意义。
    #                   如果不设置model_path,pretrained = True,此时仅加载主干开始训练。
    #                   如果不设置model_path,pretrained = False,Freeze_Train = Fasle,此时从0开始训练,且没有冻结主干的过程。
    #----------------------------------------------------------------------------------------------------------------------------#
    pretrained      = False
    #----------------------------------------------------------------------------------------------------------------------------#
    #   权值文件的下载请看README,可以通过网盘下载。模型的 预训练权重 对不同数据集是通用的,因为特征是通用的。
    #   模型的 预训练权重 比较重要的部分是 主干特征提取网络的权值部分,用于进行特征提取。
    #   预训练权重对于99%的情况都必须要用,不用的话主干部分的权值太过随机,特征提取效果不明显,网络训练的结果也不会好
    #   训练自己的数据集时提示维度不匹配正常,预测的东西都不一样了自然维度不匹配
    #
    #   如果训练过程中存在中断训练的操作,可以将model_path设置成logs文件夹下的权值文件,将已经训练了一部分的权值再次载入。
    #   同时修改下方的 冻结阶段 或者 解冻阶段 的参数,来保证模型epoch的连续性。
    #   
    #   当model_path = ''的时候不加载整个模型的权值。
    #
    #   此处使用的是整个模型的权重,因此是在train.py进行加载的,pretrain不影响此处的权值加载。
    #   如果想要让模型从主干的预训练权值开始训练,则设置model_path = '',pretrain = True,此时仅加载主干。
    #   如果想要让模型从0开始训练,则设置model_path = '',pretrain = Fasle,Freeze_Train = Fasle,此时从0开始训练,且没有冻结主干的过程。
    #   
    #   一般来讲,网络从0开始的训练效果会很差,因为权值太过随机,特征提取效果不明显,因此非常、非常、非常不建议大家从0开始训练!
    #   如果一定要从0开始,可以了解imagenet数据集,首先训练分类模型,获得网络的主干部分权值,分类模型的 主干部分 和该模型通用,基于此进行训练。
    #----------------------------------------------------------------------------------------------------------------------------#
    model_path      = "model_data/deeplab_mobilenetv2.pth"
    #---------------------------------------------------------#
    #   downsample_factor   下采样的倍数8、16 
    #                       8下采样的倍数较小、理论上效果更好。
    #                       但也要求更大的显存
    #---------------------------------------------------------#
    downsample_factor   = 16
    #------------------------------#
    #   输入图片的大小
    #------------------------------#
    input_shape         = [512, 512]
    
    #----------------------------------------------------------------------------------------------------------------------------#
    #   训练分为两个阶段,分别是冻结阶段和解冻阶段。设置冻结阶段是为了满足机器性能不足的同学的训练需求。
    #   冻结训练需要的显存较小,显卡非常差的情况下,可设置Freeze_Epoch等于UnFreeze_Epoch,此时仅仅进行冻结训练。
    #      
    #   在此提供若干参数设置建议,各位训练者根据自己的需求进行灵活调整:
    #   (一)从整个模型的预训练权重开始训练: 
    #       Adam:
    #           Init_Epoch = 0,Freeze_Epoch = 50,UnFreeze_Epoch = 100,Freeze_Train = True,optimizer_type = 'adam',Init_lr = 5e-4,weight_decay = 0。(冻结)
    #           Init_Epoch = 0,UnFreeze_Epoch = 100,Freeze_Train = False,optimizer_type = 'adam',Init_lr = 5e-4,weight_decay = 0。(不冻结)
    #       SGD:
    #           Init_Epoch = 0,Freeze_Epoch = 50,UnFreeze_Epoch = 100,Freeze_Train = True,optimizer_type = 'sgd',Init_lr = 7e-3,weight_decay = 1e-4。(冻结)
    #           Init_Epoch = 0,UnFreeze_Epoch = 100,Freeze_Train = False,optimizer_type = 'sgd',Init_lr = 7e-3,weight_decay = 1e-4。(不冻结)
    #       其中:UnFreeze_Epoch可以在100-300之间调整。
    #   (二)从主干网络的预训练权重开始训练:
    #       Adam:
    #           Init_Epoch = 0,Freeze_Epoch = 50,UnFreeze_Epoch = 100,Freeze_Train = True,optimizer_type = 'adam',Init_lr = 5e-4,weight_decay = 0。(冻结)
    #           Init_Epoch = 0,UnFreeze_Epoch = 100,Freeze_Train = False,optimizer_type = 'adam',Init_lr = 5e-4,weight_decay = 0。(不冻结)
    #       SGD:
    #           Init_Epoch = 0,Freeze_Epoch = 50,UnFreeze_Epoch = 120,Freeze_Train = True,optimizer_type = 'sgd',Init_lr = 7e-3,weight_decay = 1e-4。(冻结)
    #           Init_Epoch = 0,UnFreeze_Epoch = 120,Freeze_Train = False,optimizer_type = 'sgd',Init_lr = 7e-3,weight_decay = 1e-4。(不冻结)
    #       其中:由于从主干网络的预训练权重开始训练,主干的权值不一定适合语义分割,需要更多的训练跳出局部最优解。
    #             UnFreeze_Epoch可以在120-300之间调整。
    #             Adam相较于SGD收敛的快一些。因此UnFreeze_Epoch理论上可以小一点,但依然推荐更多的Epoch。
    #   (三)batch_size的设置:
    #       在显卡能够接受的范围内,以大为好。显存不足与数据集大小无关,提示显存不足(OOM或者CUDA out of memory)请调小batch_size。
    #       受到BatchNorm层影响,batch_size最小为2,不能为1。
    #       正常情况下Freeze_batch_size建议为Unfreeze_batch_size的1-2倍。不建议设置的差距过大,因为关系到学习率的自动调整。
    #----------------------------------------------------------------------------------------------------------------------------#
    #------------------------------------------------------------------#
    #   冻结阶段训练参数
    #   此时模型的主干被冻结了,特征提取网络不发生改变
    #   占用的显存较小,仅对网络进行微调
    #   Init_Epoch          模型当前开始的训练世代,其值可以大于Freeze_Epoch,如设置:
    #                       Init_Epoch = 60、Freeze_Epoch = 50、UnFreeze_Epoch = 100
    #                       会跳过冻结阶段,直接从60代开始,并调整对应的学习率。
    #                       (断点续练时使用)
    #   Freeze_Epoch        模型冻结训练的Freeze_Epoch
    #                       (当Freeze_Train=False时失效)
    #   Freeze_batch_size   模型冻结训练的batch_size
    #                       (当Freeze_Train=False时失效)
    #------------------------------------------------------------------#
    Init_Epoch          = 0
    Freeze_Epoch        = 50
    Freeze_batch_size   = 8
    #------------------------------------------------------------------#
    #   解冻阶段训练参数
    #   此时模型的主干不被冻结了,特征提取网络会发生改变
    #   占用的显存较大,网络所有的参数都会发生改变
    #   UnFreeze_Epoch          模型总共训练的epoch
    #   Unfreeze_batch_size     模型在解冻后的batch_size
    #------------------------------------------------------------------#
    UnFreeze_Epoch      = 100
    Unfreeze_batch_size = 4
    #------------------------------------------------------------------#
    #   Freeze_Train    是否进行冻结训练
    #                   默认先冻结主干训练后解冻训练。
    #------------------------------------------------------------------#
    Freeze_Train        = True

    #------------------------------------------------------------------#
    #   其它训练参数:学习率、优化器、学习率下降有关
    #------------------------------------------------------------------#
    #------------------------------------------------------------------#
    #   Init_lr         模型的最大学习率
    #                   当使用Adam优化器时建议设置  Init_lr=5e-4
    #                   当使用SGD优化器时建议设置   Init_lr=7e-3
    #   Min_lr          模型的最小学习率,默认为最大学习率的0.01
    #------------------------------------------------------------------#
    Init_lr             = 7e-3
    Min_lr              = Init_lr * 0.01
    #------------------------------------------------------------------#
    #   optimizer_type  使用到的优化器种类,可选的有adam、sgd
    #                   当使用Adam优化器时建议设置  Init_lr=5e-4
    #                   当使用SGD优化器时建议设置   Init_lr=7e-3
    #   momentum        优化器内部使用到的momentum参数
    #   weight_decay    权值衰减,可防止过拟合
    #                   adam会导致weight_decay错误,使用adam时建议设置为0。
    #------------------------------------------------------------------#
    optimizer_type      = "sgd"
    momentum            = 0.9
    weight_decay        = 1e-4
    #------------------------------------------------------------------#
    #   lr_decay_type   使用到的学习率下降方式,可选的有'step'、'cos'
    #------------------------------------------------------------------#
    lr_decay_type       = 'cos'
    #------------------------------------------------------------------#
    #   save_period     多少个epoch保存一次权值
    #------------------------------------------------------------------#
    save_period         = 5
    #------------------------------------------------------------------#
    #   save_dir        权值与日志文件保存的文件夹
    #------------------------------------------------------------------#
    save_dir            = 'logs'
    #------------------------------------------------------------------#
    #   eval_flag       是否在训练时进行评估,评估对象为验证集
    #   eval_period     代表多少个epoch评估一次,不建议频繁的评估
    #                   评估需要消耗较多的时间,频繁评估会导致训练非常慢
    #   此处获得的mAP会与get_map.py获得的会有所不同,原因有二:
    #   (一)此处获得的mAP为验证集的mAP。
    #   (二)此处设置评估参数较为保守,目的是加快评估速度。
    #------------------------------------------------------------------#
    eval_flag           = True
    eval_period         = 5

    #------------------------------------------------------------------#
    #   VOCdevkit_path  数据集路径
    #------------------------------------------------------------------#
    VOCdevkit_path  = 'VOCdevkit'
    #------------------------------------------------------------------#
    #   建议选项:
    #   种类少(几类)时,设置为True
    #   种类多(十几类)时,如果batch_size比较大(10以上),那么设置为True
    #   种类多(十几类)时,如果batch_size比较小(10以下),那么设置为False
    #------------------------------------------------------------------#
    dice_loss       = False
    #------------------------------------------------------------------#
    #   是否使用focal loss来防止正负样本不平衡
    #------------------------------------------------------------------#
    focal_loss      = False
    #------------------------------------------------------------------#
    #   是否给不同种类赋予不同的损失权值,默认是平衡的。
    #   设置的话,注意设置成numpy形式的,长度和num_classes一样。
    #   如:
    #   num_classes = 3
    #   cls_weights = np.array([1, 2, 3], np.float32)
    #------------------------------------------------------------------#
    cls_weights     = np.ones([num_classes], np.float32)
    #------------------------------------------------------------------#
    #   num_workers     用于设置是否使用多线程读取数据,1代表关闭多线程
    #                   开启后会加快数据读取速度,但是会占用更多内存
    #                   keras里开启多线程有些时候速度反而慢了许多
    #                   在IO为瓶颈的时候再开启多线程,即GPU运算速度远大于读取图片的速度。
    #------------------------------------------------------------------#
    num_workers         = 4

    seed_everything(seed)
    #------------------------------------------------------#
    #   设置用到的显卡
    #------------------------------------------------------#
    ngpus_per_node  = torch.cuda.device_count()
    if distributed:
        dist.init_process_group(backend="nccl")
        local_rank  = int(os.environ["LOCAL_RANK"])
        rank        = int(os.environ["RANK"])
        device      = torch.device("cuda", local_rank)
        if local_rank == 0:
            print(f"[{os.getpid()}] (rank = {rank}, local_rank = {local_rank}) training...")
            print("Gpu Device Count : ", ngpus_per_node)
    else:
        device          = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        local_rank      = 0
        rank            = 0

    #----------------------------------------------------#
    #   下载预训练权重
    #----------------------------------------------------#
    if pretrained:
        if distributed:
            if local_rank == 0:
                download_weights(backbone)  
            dist.barrier()
        else:
            download_weights(backbone)

    model   = DeepLab(num_classes=num_classes, backbone=backbone, downsample_factor=downsample_factor, pretrained=pretrained)
    if not pretrained:
        weights_init(model)
    if model_path != '':
        #------------------------------------------------------#
        #   权值文件请看README,百度网盘下载
        #------------------------------------------------------#
        if local_rank == 0:
            print('Load weights {}.'.format(model_path))
        
        #------------------------------------------------------#
        #   根据预训练权重的Key和模型的Key进行加载
        #------------------------------------------------------#
        model_dict      = model.state_dict()
        pretrained_dict = torch.load(model_path, map_location = device)
        load_key, no_load_key, temp_dict = [], [], {}
        for k, v in pretrained_dict.items():
            if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
                temp_dict[k] = v
                load_key.append(k)
            else:
                no_load_key.append(k)
        model_dict.update(temp_dict)
        model.load_state_dict(model_dict)
        #------------------------------------------------------#
        #   显示没有匹配上的Key
        #------------------------------------------------------#
        if local_rank == 0:
            print("\nSuccessful Load Key:", str(load_key)[:500], "……\nSuccessful Load Key Num:", len(load_key))
            print("\nFail To Load Key:", str(no_load_key)[:500], "……\nFail To Load Key num:", len(no_load_key))
            print("\n\033[1;33;44m温馨提示,head部分没有载入是正常现象,Backbone部分没有载入是错误的。\033[0m")

    #----------------------#
    #   记录Loss
    #----------------------#
    if local_rank == 0:
        time_str        = datetime.datetime.strftime(datetime.datetime.now(),'%Y_%m_%d_%H_%M_%S')
        log_dir         = os.path.join(save_dir, "loss_" + str(time_str))
        loss_history    = LossHistory(log_dir, model, input_shape=input_shape)
    else:
        loss_history    = None

    #------------------------------------------------------------------#
    #   torch 1.2不支持amp,建议使用torch 1.7.1及以上正确使用fp16
    #   因此torch1.2这里显示"could not be resolve"
    #------------------------------------------------------------------#
    if fp16:
        from torch.cuda.amp import GradScaler as GradScaler
        scaler = GradScaler()
    else:
        scaler = None

    model_train     = model.train()
    #----------------------------#
    #   多卡同步Bn
    #----------------------------#
    if sync_bn and ngpus_per_node > 1 and distributed:
        model_train = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model_train)
    elif sync_bn:
        print("Sync_bn is not support in one gpu or not distributed.")

    if Cuda:
        if distributed:
            #----------------------------#
            #   多卡平行运行
            #----------------------------#
            model_train = model_train.cuda(local_rank)
            model_train = torch.nn.parallel.DistributedDataParallel(model_train, device_ids=[local_rank], find_unused_parameters=True)
        else:
            model_train = torch.nn.DataParallel(model)
            cudnn.benchmark = True
            model_train = model_train.cuda()
    
    #---------------------------#
    #   读取数据集对应的txt
    #---------------------------#
    with open(os.path.join(VOCdevkit_path, "VOC2007/ImageSets/Segmentation/train.txt"),"r") as f:
        train_lines = f.readlines()
    with open(os.path.join(VOCdevkit_path, "VOC2007/ImageSets/Segmentation/val.txt"),"r") as f:
        val_lines = f.readlines()
    num_train   = len(train_lines)
    num_val     = len(val_lines)

    if local_rank == 0:
        show_config(
            num_classes = num_classes, backbone = backbone, model_path = model_path, input_shape = input_shape, \
            Init_Epoch = Init_Epoch, Freeze_Epoch = Freeze_Epoch, UnFreeze_Epoch = UnFreeze_Epoch, Freeze_batch_size = Freeze_batch_size, Unfreeze_batch_size = Unfreeze_batch_size, Freeze_Train = Freeze_Train, \
            Init_lr = Init_lr, Min_lr = Min_lr, optimizer_type = optimizer_type, momentum = momentum, lr_decay_type = lr_decay_type, \
            save_period = save_period, save_dir = save_dir, num_workers = num_workers, num_train = num_train, num_val = num_val
        )
        #---------------------------------------------------------#
        #   总训练世代指的是遍历全部数据的总次数
        #   总训练步长指的是梯度下降的总次数 
        #   每个训练世代包含若干训练步长,每个训练步长进行一次梯度下降。
        #   此处仅建议最低训练世代,上不封顶,计算时只考虑了解冻部分
        #----------------------------------------------------------#
        wanted_step = 1.5e4 if optimizer_type == "sgd" else 0.5e4
        total_step  = num_train // Unfreeze_batch_size * UnFreeze_Epoch
        if total_step <= wanted_step:
            if num_train // Unfreeze_batch_size == 0:
                raise ValueError('数据集过小,无法进行训练,请扩充数据集。')
            wanted_epoch = wanted_step // (num_train // Unfreeze_batch_size) + 1
            print("\n\033[1;33;44m[Warning] 使用%s优化器时,建议将训练总步长设置到%d以上。\033[0m"%(optimizer_type, wanted_step))
            print("\033[1;33;44m[Warning] 本次运行的总训练数据量为%d,Unfreeze_batch_size为%d,共训练%d个Epoch,计算出总训练步长为%d。\033[0m"%(num_train, Unfreeze_batch_size, UnFreeze_Epoch, total_step))
            print("\033[1;33;44m[Warning] 由于总训练步长为%d,小于建议总步长%d,建议设置总世代为%d。\033[0m"%(total_step, wanted_step, wanted_epoch))
        
    #------------------------------------------------------#
    #   主干特征提取网络特征通用,冻结训练可以加快训练速度
    #   也可以在训练初期防止权值被破坏。
    #   Init_Epoch为起始世代
    #   Interval_Epoch为冻结训练的世代
    #   Epoch总训练世代
    #   提示OOM或者显存不足请调小Batch_size
    #------------------------------------------------------#
    if True:
        UnFreeze_flag = False
        #------------------------------------#
        #   冻结一定部分训练
        #------------------------------------#
        if Freeze_Train:
            for param in model.backbone.parameters():
                param.requires_grad = False

        #-------------------------------------------------------------------#
        #   如果不冻结训练的话,直接设置batch_size为Unfreeze_batch_size
        #-------------------------------------------------------------------#
        batch_size = Freeze_batch_size if Freeze_Train else Unfreeze_batch_size

        #-------------------------------------------------------------------#
        #   判断当前batch_size,自适应调整学习率
        #-------------------------------------------------------------------#
        nbs             = 16
        lr_limit_max    = 5e-4 if optimizer_type == 'adam' else 1e-1
        lr_limit_min    = 3e-4 if optimizer_type == 'adam' else 5e-4
        if backbone == "xception":
            lr_limit_max    = 1e-4 if optimizer_type == 'adam' else 1e-1
            lr_limit_min    = 1e-4 if optimizer_type == 'adam' else 5e-4
        Init_lr_fit     = min(max(batch_size / nbs * Init_lr, lr_limit_min), lr_limit_max)
        Min_lr_fit      = min(max(batch_size / nbs * Min_lr, lr_limit_min * 1e-2), lr_limit_max * 1e-2)

        #---------------------------------------#
        #   根据optimizer_type选择优化器
        #---------------------------------------#
        optimizer = {
            'adam'  : optim.Adam(model.parameters(), Init_lr_fit, betas = (momentum, 0.999), weight_decay = weight_decay),
            'sgd'   : optim.SGD(model.parameters(), Init_lr_fit, momentum = momentum, nesterov=True, weight_decay = weight_decay)
        }[optimizer_type]

        #---------------------------------------#
        #   获得学习率下降的公式
        #---------------------------------------#
        lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch)
        
        #---------------------------------------#
        #   判断每一个世代的长度
        #---------------------------------------#
        epoch_step      = num_train // batch_size
        epoch_step_val  = num_val // batch_size
        
        if epoch_step == 0 or epoch_step_val == 0:
            raise ValueError("数据集过小,无法继续进行训练,请扩充数据集。")

        train_dataset   = DeeplabDataset(train_lines, input_shape, num_classes, True, VOCdevkit_path)
        val_dataset     = DeeplabDataset(val_lines, input_shape, num_classes, False, VOCdevkit_path)

        if distributed:
            train_sampler   = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True,)
            val_sampler     = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False,)
            batch_size      = batch_size // ngpus_per_node
            shuffle         = False
        else:
            train_sampler   = None
            val_sampler     = None
            shuffle         = True

        gen             = DataLoader(train_dataset, shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True,
                                    drop_last = True, collate_fn = deeplab_dataset_collate, sampler=train_sampler, 
                                    worker_init_fn=partial(worker_init_fn, rank=rank, seed=seed))
        gen_val         = DataLoader(val_dataset  , shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True, 
                                    drop_last = True, collate_fn = deeplab_dataset_collate, sampler=val_sampler, 
                                    worker_init_fn=partial(worker_init_fn, rank=rank, seed=seed))

        #----------------------#
        #   记录eval的map曲线
        #----------------------#
        if local_rank == 0:
            eval_callback   = EvalCallback(model, input_shape, num_classes, val_lines, VOCdevkit_path, log_dir, Cuda, \
                                            eval_flag=eval_flag, period=eval_period)
        else:
            eval_callback   = None
        
        #---------------------------------------#
        #   开始模型训练
        #---------------------------------------#
        for epoch in range(Init_Epoch, UnFreeze_Epoch):
            #---------------------------------------#
            #   如果模型有冻结学习部分
            #   则解冻,并设置参数
            #---------------------------------------#
            if epoch >= Freeze_Epoch and not UnFreeze_flag and Freeze_Train:
                batch_size = Unfreeze_batch_size

                #-------------------------------------------------------------------#
                #   判断当前batch_size,自适应调整学习率
                #-------------------------------------------------------------------#
                nbs             = 16
                lr_limit_max    = 5e-4 if optimizer_type == 'adam' else 1e-1
                lr_limit_min    = 3e-4 if optimizer_type == 'adam' else 5e-4
                if backbone == "xception":
                    lr_limit_max    = 1e-4 if optimizer_type == 'adam' else 1e-1
                    lr_limit_min    = 1e-4 if optimizer_type == 'adam' else 5e-4
                Init_lr_fit     = min(max(batch_size / nbs * Init_lr, lr_limit_min), lr_limit_max)
                Min_lr_fit      = min(max(batch_size / nbs * Min_lr, lr_limit_min * 1e-2), lr_limit_max * 1e-2)
                #---------------------------------------#
                #   获得学习率下降的公式
                #---------------------------------------#
                lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch)
                    
                for param in model.backbone.parameters():
                    param.requires_grad = True
                            
                epoch_step      = num_train // batch_size
                epoch_step_val  = num_val // batch_size

                if epoch_step == 0 or epoch_step_val == 0:
                    raise ValueError("数据集过小,无法继续进行训练,请扩充数据集。")

                if distributed:
                    batch_size = batch_size // ngpus_per_node

                gen             = DataLoader(train_dataset, shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True,
                                            drop_last = True, collate_fn = deeplab_dataset_collate, sampler=train_sampler, 
                                            worker_init_fn=partial(worker_init_fn, rank=rank, seed=seed))
                gen_val         = DataLoader(val_dataset  , shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True, 
                                            drop_last = True, collate_fn = deeplab_dataset_collate, sampler=val_sampler, 
                                            worker_init_fn=partial(worker_init_fn, rank=rank, seed=seed))

                UnFreeze_flag = True

            if distributed:
                train_sampler.set_epoch(epoch)

            set_optimizer_lr(optimizer, lr_scheduler_func, epoch)

            fit_one_epoch(model_train, model, loss_history, eval_callback, optimizer, epoch, 
                    epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, dice_loss, focal_loss, cls_weights, num_classes, fp16, scaler, save_period, save_dir, local_rank)

            if distributed:
                dist.barrier()

        if local_rank == 0:
            loss_history.writer.close()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值