Problem Description
小A有一个含有n个非负整数的数列与m个区间。每个区间可以表示为
li,ri
。
它想选择其中k个区间, 使得这些区间的交的那些位置所对应的数的和最大。
例如样例中,选择[2,5]与[4,5]两个区间就可以啦。
Input
多组测试数据
第一行三个数n,k,m(1≤n≤100000,1≤k≤m≤100000)。
接下来一行n个数ai,表示lyk的数列(0≤ai≤109)。
接下来m行,每行两个数li,ri,表示每个区间(1≤li≤ri≤n)。
Output
一行表示答案
Sample Input
5 2 3
1 2 3 4 6
4 5
2 5
1 4
Sample Output
10
Source
2016”百度之星” - 初赛(Astar Round2B)
皮球爷爷出的题(lyk躺枪)
离线排序+线段树+尺取
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
#define p1 id<<1
#define p2 id<<1^1
using namespace std;
int n,m,k;
int tree[400005],add[400005],a[100005];
ll ans,s[100005];
struct ty
{
int x,y;
}p[100005];
bool cmp(ty a,ty b)
{
if(a.y!=b.y) return a.y>b.y; else return a.x<b.x;
}
void build(int id,int l,int r)
{
if(l==r)
{
tree[id]=add[id]=0;
return;
}
int mid=(l+r)>>1;
build(p1,l,mid);
build(p2,mid+1,r);
tree[id]=add[id]=0;
}
void update(int id,int l,int r,int x,int y)
{
if(x<=l&&r<=y)
{
add[id]+=1;
return;
}
add[p1]+=add[id];
add[p2]+=add[id];
add[id]=0;
int mid=(l+r)>>1;
if(y<=mid) update(p1,l,mid,x,y);
else
if(x>mid) update(p2,mid+1,r,x,y);
else
{
update(p1,l,mid,x,mid);
update(p2,mid+1,r,mid+1,y);
}
tree[id]=min(tree[p1],tree[p2]);
}
int query(int id,int l,int r,int x,int y)
{
if(x<=l&&r<=y) return tree[id]+add[id];
add[p1]+=add[id];
add[p2]+=add[id];
add[id]=0;
int mid=(l+r)>>1;
int s;
if(y<=mid) s=query(p1,l,mid,x,y);
else
if(x>mid) s=query(p2,mid+1,r,x,y);
else s=min(query(p1,l,mid,x,mid),query(p2,mid+1,r,mid+1,y));
tree[id]=min(tree[p1]+add[p1],tree[p2]+add[p2]);
return s;
}
int main()
{
while(scanf("%d%d%d",&n,&k,&m)!=EOF)
{
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
s[i]=s[i-1]+a[i];
}
for(int i=1;i<=m;i++) scanf("%d%d",&p[i].x,&p[i].y);
sort(p+1,p+m+1,cmp);
build(1,1,n);
ans=0;
int l=1e9;
for(int i=1;i<=m;i++)
{
update(1,1,n,p[i].x,p[i].y);
l=min(l,p[i].y);
while(l>0&&query(1,1,n,l,l)>=k) l--;
l++;
ans=max(ans,s[p[i].y]-s[l-1]);
}
printf("%lld\n",ans);
}
return 0;
}