bzoj 4746 [Usaco2016 Dec]Lasers and Mirrors

Description
出于某种原因,农夫约翰的奶牛总是喜欢使用激光。奶牛们搞到了一个强大的激光发射器,它很重,所以不能移动
它的位置。奶牛想用它照射到约翰的谷仓的另一端。众所周知,光沿直线传播,所以必须通过镜子的反射来使光线
发生偏折。激光射出的方向只能是平行于x轴或y轴的。农场上有N(1<=N<=100000)个坑位于平面直角坐标系上的
不同点(和激光发射器的位置和目标点的位置也不相同)。奶牛可以把镜子安装在坑里(当然也可以不安)。镜子
可以摆成“/”或者“\”。由物理知识可以知道,一道平行于x轴的光射到镜子上一定会平行于y轴射出,平行于y
轴的光一定会平行于x轴射出。现在给你激光发射器的坐标、目标点的坐标和所有坑的坐标,请你用最少的镜子来
实现奶牛的梦想。

第一行包含5个正整数,分别是N,x1,y1,x2,y2,N的意义如题所述,(x1,y1)为激光发射器的坐标,(x2,y2)为目标点的坐标。
0<=x1,y1,x2,y2<=1,000,000,000
接下来N行,每行两个整数x,y表示坑的坐标。
0<=x,y<=1,000,000,000

最少安装多少个镜子。如果无论怎样都无法完成,输出-1。

Sample Input
4 0 0 7 2
3 2
0 2
1 6
3 0
Sample Output
1

Solution

其实是很赤裸裸的bfs,但坐标的大小增加了离散化等操作,就变得有点繁琐了
bzojAC300题纪念(尽管一大半是usaco水题)

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,t,w,xl,yl,xb,yb,len,now,tot;
int Next[100005],to[100005],id[100005],head[100005];
int Head[100005],To[100005],Id[100005],NEXT[100005];
int x[100005],y[100005],z[100005],p1[100005],p2[100005],p[100005];
struct ty
{
    int x,y,v,id;
}q[100005],a[100005];
void add(int x,int y,int z)
{
    tot++;
    Next[tot]=head[x];
    to[tot]=y;
    id[tot]=z;
    head[x]=tot;
    NEXT[tot]=Head[y];
    To[tot]=x;
    Id[tot]=z;
    Head[y]=tot;
}
bool cmp(ty x,ty y)
{
    return x.v<y.v;
}
void prepare()
{
    cin>>n>>xl>>yl>>xb>>yb;
    for(int i=1;i<=n;i++) scanf("%d%d",&q[i].x,&q[i].y);
    q[n+1].x=xb;q[n+1].y=yb;
    q[n+2].x=xl;q[n+2].y=yl;
    a[0].v=-1e9;
    for(int i=1;i<=n+2;i++) 
    {
        len++;
        a[len].v=q[i].x;
        a[len].id=i;
    }
    sort(a+1,a+len+1,cmp);
    now=0;
    for(int i=1;i<=len;i++) 
    {
        if(a[i].v!=a[i-1].v) now++;
        q[a[i].id].x=now;
    }
    len=0;
    for(int i=1;i<=n+2;i++) 
    {
        len++;
        a[len].v=q[i].y;
        a[len].id=i;
    }
    sort(a+1,a+len+1,cmp);
    now=0;
    for(int i=1;i<=len;i++) 
    {
        if(a[i].v!=a[i-1].v) now++;
        q[a[i].id].y=now;
    }
    for(int i=1;i<=n+1;i++) add(q[i].x,q[i].y,i);
}   
int main()
{
    prepare();
    x[1]=q[n+2].x;
    y[1]=q[n+2].y;
    z[1]=0;
    t=0;w=1;
    while(t<w) 
    {
        t++;
        if(x[t]==q[n+1].x&&y[t]==q[n+1].y) 
        {
            cout<<z[t]-1;
            return 0;
        }
        if(p1[x[t]]==0) 
        {
            for(int i=head[x[t]];i!=0;i=Next[i]) 
            {
                if(p[id[i]]==0) 
                {
                    w++;
                    x[w]=x[t];
                    y[w]=to[i];
                    z[w]=z[t]+1;
                    p[id[i]]=1;
                }
            }
            p1[x[t]]=1;
        }
        if(p2[y[t]]==0) 
        {
            for(int i=Head[y[t]];i!=0;i=NEXT[i]) 
            {
                if(p[Id[i]]==0) 
                {
                    w++;
                    x[w]=To[i];
                    y[w]=y[t];
                    z[w]=z[t]+1;
                    p[id[i]]=1;
                }
            }
            p2[y[t]]=1;
        }
    }
    cout<<"-1";
    return 0;
}

过了这么久才积累到300题,而我的男神lwq12138从他第一次提交到最后一次提交,总共252天,AC626题,平均每天两道半。这是何等的毅力!Orz。。。

题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值