若A和B都是有限的,证明所有函数f:A->B的集合是一个有限集.

题:若 A A A B B B都是有限的,证明所有函数 f : A → B f:A \to B f:AB的集合是一个有限集.
(摘自《拓扑学第二版》6.7)

证:

S = { f ∣ f : A → B } S = \{ f \mid f:A \to B \} S={ff:AB}

∵ A = ∅ ∨ B = ∅ ⇒ S = ∅ \because A = \varnothing \vee B = \varnothing \Rightarrow S = \varnothing A=B=S=

∴ A = ∅ ∨ B = ∅ \therefore A = \varnothing \vee B = \varnothing A=B=时成立

以下证明 A ≠ ∅ ∧ B ≠ ∅ A \ne \varnothing \wedge B \ne \varnothing A=B=情形

∵ \because A A A B B B都是有限

∴ ∃ g : A → { 1 , 2 , ⋯   , m } , ∃ h : B → { 1 , 2 , ⋯   , n } \therefore \exists g: A \to \{1, 2, \cdots, m \}, \exists h: B \to \{1, 2, \cdots, n \} g:A{1,2,,m},h:B{1,2,,n},其中 m , n ∈ Z + m , n \in Z_+ m,nZ+

易知 S S S的基数是 n m n^m nm,那么必然 ∃ i : S → { 1 , 2 , ⋯   , n m } \exists i: S \to \{ 1, 2, \cdots, n^m \} i:S{1,2,,nm} 一一对应函数

直接给出函数:

i ( f ) = 1 + ∑ j = 1 m [ f ( g − 1 ( j ) ) − 1 ] ∗ n j − 1 i(f) = 1 + \sum_{j = 1}^{m}[f(g^{-1}(j)) - 1] * n^{j-1} i(f)=1+j=1m[f(g1(j))1]nj1

可知 inf ⁡ S = 1 , sup ⁡ S = 1 + ( n − 1 ) ( 1 + n 1 + ⋯ + n m − 1 ) = n m \inf S= 1, \sup S = 1 + (n-1)(1 + n^1 + \cdots + n^{m - 1}) = n^m infS=1,supS=1+(n1)(1+n1++nm1)=nm

易得其一一对应性,一如十进制数的表示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值