初等数论:既约剩余系的k次幂剩余

题:正整数 n = 2 0 t p 1 t 1 ⋯ p n t n n = 2^t_0p_1^{t_1} \cdots p_n^{t_n} n=20tp1t1pntn,设 c 1 , c 2 , ⋯   , c ϕ ( n ) c_1, c_2, \cdots, c_{\phi(n)} c1,c2,,cϕ(n) n n n的既约剩余系,对于任意 k ∈ Z + k \in Z_+ kZ+,分析 c 1 k , c 2 k , ⋯   , c ϕ ( n ) k c_1^k, c_2^k, \cdots, c_{\phi(n)}^k c1k,c2k,,cϕ(n)k的剩余情况.

解:

求解 k k k次幂剩余等价于求解模指数方程 x k ≡ c ( m o d n ) x^k \equiv c \pmod n xkc(modn) c c c需要满足的条件及不同余个数

∵ x k ≡ c ( m o d n ) \because x^k \equiv c \pmod n xkc(modn)

∴ x k ≡ c ( m o d p j t j ) , t ∈ [ 1 , n ] \therefore x^k \equiv c \pmod {p_{j}^{t_j}}, t \in [1, n] xkc(modpjtj),t[1,n]

因为这个方程与原根有关,这里设 r 1 , r 2 , … , r n r_1, r_2, \dots, r_n r1,r2,,rn 分别为 p 1 t 1 , p 2 t 2 , ⋯   , p n t n p_1^{t_1}, p_2^{t_2}, \cdots, p_n^{t_n} p1t1,p2t2,,pntn的原根,并使用指数系表示

∵ \because 对于 e ≥ 3 → o r d 2 e 5 = 2 e − 2 e \ge 3 \to ord_{2^e}5 = 2^{e- 2} e3ord2e5=2e2

∴ ∀ 2 ∤ x ∃ α ∈ 0 , 1 , β ∈ [ 0 , 2 e − 2 − 1 ] x ≡ ( − 1 ) α 5 β ( m o d 2 e ) \therefore \forall_{2 \nmid x}\exists_{\alpha \in {0, 1}, \beta \in [0, 2^{e-2} - 1]} x \equiv (-1)^\alpha 5^\beta \pmod {2^e} 2xα0,1,β[0,2e21]x(1)α5β(mod2e)

即使对于 e < 3 e \lt 3 e<3时也成立:

e = 1 ⇒ α = β = 0 e = 1 \Rightarrow \alpha = \beta = 0 e=1α=β=0

e = 2 ⇒ { 1 ≡ ( − 1 ) 0 5 0 ( m o d 2 e ) 3 ≡ ( − 1 ) 1 5 0 ( m o d 2 e ) e = 2 \Rightarrow \begin{cases} 1 \equiv (-1)^0 5^0 \pmod {2^e} \\ 3 \equiv (-1)^1 5^0 \pmod {2^e} \\ \end{cases} e=2{1(1)050(mod2e)3(1)150(mod2e)

∴ \therefore 可以使用选定的原根和上面的 2 e 2^e 2e的剩余表示出指数系

( α , β , γ 1 , γ 2 , ⋯   , γ n ) (\alpha, \beta, \gamma_1, \gamma_2, \cdots, \gamma_n) (α,β,γ1,γ2,,γn)

α ∈ { 0 , 1 } , β ∈ [ 0 , 2 t 0 − 2 − 1 ] , ∀ j ∈ [ 1 , n ] γ j ∈ [ 1 , ϕ ( p j t j ) ] \alpha \in \{0, 1 \}, \beta \in [0, 2^{t_0 - 2} - 1], \forall_{j \in [1, n]}\gamma_j \in [1, \phi(p_j^{t_j})] α{0,1},β[0,2t021],j[1,n]γj[1,ϕ(pjtj)]

其中 α , β \alpha, \beta α,β 2 t 0 2^{t_0} 2t0的指数系,其余的 γ j \gamma_j γj p j t j , j ∈ [ 1 , n ] p_j^{t_j}, j \in [1, n] pjtj,j[1,n]的指数表示

可以证明指数系唯一,且具有对数那样的运算规则,即

( α , β , γ 1 , γ 2 , ⋯   , γ n ) k = ( k α , k β , k γ 1 , k γ 2 , ⋯   , k γ n ) (\alpha, \beta, \gamma_1, \gamma_2, \cdots, \gamma_n)^k = (k\alpha, k\beta, k\gamma_1, k\gamma_2, \cdots, k\gamma_n) (α,β,γ1,γ2,,γn)k=(kα,kβ,kγ1,kγ2,,kγn)

( α , β , γ 1 , γ 2 , ⋯   , γ n ) ( α ′ , β ′ , γ 1 ′ , γ 2 ′ , ⋯   , γ n ′ ) = ( α + α ′ , β + β ′ , γ 1 + γ 1 ′ , γ 2 + γ 2 ′ , ⋯   , γ n + γ n ′ ) (\alpha, \beta, \gamma_1, \gamma_2, \cdots, \gamma_n)(\alpha', \beta', \gamma_1', \gamma_2', \cdots, \gamma_n') = (\alpha + \alpha', \beta + \beta', \gamma_1 + \gamma_1', \gamma_2 + \gamma_2', \cdots, \gamma_n+\gamma_n') (α,β,γ1,γ2,,γn)(α,β,γ1,γ2,,γn)=(α+α,β+β,γ1+γ1,γ2+γ2,,γn+γn)

d 0 , d 1 , ⋯   , d n d_0, d_1, \cdots, d_n d0,d1,,dn分别表示 2 t 0 , p 1 t 1 , ⋯   , p n t n 2^{t_0}, p_1^{t_1}, \cdots, p_n^{t_n} 2t0,p1t1,,pntn的解个数,先考虑 2 t 0 2^{t_0} 2t0情形

x k ≡ c ( m o d 2 t 0 ) ⇒ k ( α , β ) ≡ ( α c , β c ) ( m o d ( 2 , 2 t 0 − 2 ) ) x^k \equiv c \pmod {2^{t_0}} \Rightarrow k(\alpha, \beta) \equiv (\alpha_c, \beta_c) \pmod {(2, 2^{t_0 - 2})} xkc(mod2t0)k(α,β)(αc,βc)(mod(2,2t02)),其中 ( , ) (, ) (,)表示分量,即有

{ k α ≡ α c ( m o d 2 ) k β ≡ β c ( m o d 2 t 0 − 2 ) \begin{cases} k\alpha \equiv \alpha_c \pmod 2 \\ k\beta \equiv \beta_c \pmod {2^{t_0-2}} \\ \end{cases} {kααc(mod2)kββc(mod2t02)

2 ∤ k ⇒ c 2 \nmid k \Rightarrow c 2kc可为任意数

2 ∣ k ⇒ { α c ≡ 0 ( m o d 2 ) β c ≡ 0 ( m o d ( k , 2 t 0 − 2 ) ) 2 \mid k \Rightarrow \begin{cases} \alpha_c \equiv 0 \pmod 2 \\ \beta_c \equiv 0 \pmod {(k, {2^{t_0-2}})} \\ \end{cases} 2k{αc0(mod2)βc0(mod(k,2t02))

可以得到解一共有

d 0 = 2 t 0 − 1 ( k , 2 ) ( k , 2 t 0 − 2 ) d_0 = \frac{2^{t_0-1}}{(k, 2)(k, {2^{t_0-2}})} d0=(k,2)(k,2t02)2t01

上面是对 t 0 ≥ 2 t_0 \ge 2 t02时成立,对于 t 0 = 1 t_0 = 1 t0=1,可知 1 1 1 2 2 2的原根,因此 ( k , 1 ) = 1 ⇒ d 0 = 1 (k, 1) = 1 \Rightarrow d_0 = 1 (k,1)=1d0=1

类似对于 j ∈ [ 1 , n ] , p j t j j \in [1, n], p_j^{t_j} j[1,n],pjtj,有

d j = ϕ ( p j t j ) ( k , ϕ ( p j t j ) ) d_j = \frac{\phi(p_j^{t_j})}{(k, \phi(p_j^{t_j}))} dj=(k,ϕ(pjtj))ϕ(pjtj)

所有解的个数 d = d 0 d 1 ⋯ d n d = d_0d_1 \cdots d_n d=d0d1dn,即

d = { ϕ ( n ) ∏ j = 1 n ( k , ϕ ( p j t j ) ) , t 0 ∈ 0 , 1 ϕ ( n ) ( k , 2 ) ( k , 2 t 0 − 2 ) ∏ j = 1 n ( k , ϕ ( p j t j ) ) , t 0 ≥ 2 d = \begin{cases} \frac{\phi(n)}{\prod_{j=1}^n (k, \phi(p_j^{t_j}))}, & t_0 \in {0, 1}\\ \frac{\phi(n)}{(k, 2)(k, {2^{t_0-2}})\prod_{j=1}^n (k, \phi(p_j^{t_j}))}, & t_0 \ge 2\\ \end{cases} d=j=1n(k,ϕ(pjtj))ϕ(n),(k,2)(k,2t02)j=1n(k,ϕ(pjtj))ϕ(n),t00,1t02

最后用具体数字来验证一下

n = 2 ∗ 3 , k = 2 , S = { 1 } n= 2*3, k = 2, S = \{ 1 \} n=23,k=2,S={1},由第一种可知结果相等

n = 2 2 ∗ 3 , k = 3 , S = { 1 , 5 , 7 , 11 } n= 2^2*3, k = 3, S = \{ 1, 5, 7, 11 \} n=223,k=3,S={1,5,7,11},由第二种可知结果相等

对于任一有解的 c c c出现的次数可由上面 ϕ ( n ) d \frac{\phi(n)}{d} dϕ(n)取得

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值