题:正整数 n = 2 0 t p 1 t 1 ⋯ p n t n n = 2^t_0p_1^{t_1} \cdots p_n^{t_n} n=20tp1t1⋯pntn,设 c 1 , c 2 , ⋯ , c ϕ ( n ) c_1, c_2, \cdots, c_{\phi(n)} c1,c2,⋯,cϕ(n)为 n n n的既约剩余系,对于任意 k ∈ Z + k \in Z_+ k∈Z+,分析 c 1 k , c 2 k , ⋯ , c ϕ ( n ) k c_1^k, c_2^k, \cdots, c_{\phi(n)}^k c1k,c2k,⋯,cϕ(n)k的剩余情况.
解:
求解 k k k次幂剩余等价于求解模指数方程 x k ≡ c ( m o d n ) x^k \equiv c \pmod n xk≡c(modn)的 c c c需要满足的条件及不同余个数
∵ x k ≡ c ( m o d n ) \because x^k \equiv c \pmod n ∵xk≡c(modn)
∴ x k ≡ c ( m o d p j t j ) , t ∈ [ 1 , n ] \therefore x^k \equiv c \pmod {p_{j}^{t_j}}, t \in [1, n] ∴xk≡c(modpjtj),t∈[1,n]
因为这个方程与原根有关,这里设 r 1 , r 2 , … , r n r_1, r_2, \dots, r_n r1,r2,…,rn 分别为 p 1 t 1 , p 2 t 2 , ⋯ , p n t n p_1^{t_1}, p_2^{t_2}, \cdots, p_n^{t_n} p1t1,p2t2,⋯,pntn的原根,并使用指数系表示
∵ \because ∵ 对于 e ≥ 3 → o r d 2 e 5 = 2 e − 2 e \ge 3 \to ord_{2^e}5 = 2^{e- 2} e≥3→ord2e5=2e−2
∴ ∀ 2 ∤ x ∃ α ∈ 0 , 1 , β ∈ [ 0 , 2 e − 2 − 1 ] x ≡ ( − 1 ) α 5 β ( m o d 2 e ) \therefore \forall_{2 \nmid x}\exists_{\alpha \in {0, 1}, \beta \in [0, 2^{e-2} - 1]} x \equiv (-1)^\alpha 5^\beta \pmod {2^e} ∴∀2∤x∃α∈0,1,β∈[0,2e−2−1]x≡(−1)α5β(mod2e)
即使对于 e < 3 e \lt 3 e<3时也成立:
e = 1 ⇒ α = β = 0 e = 1 \Rightarrow \alpha = \beta = 0 e=1⇒α=β=0
e = 2 ⇒ { 1 ≡ ( − 1 ) 0 5 0 ( m o d 2 e ) 3 ≡ ( − 1 ) 1 5 0 ( m o d 2 e ) e = 2 \Rightarrow \begin{cases} 1 \equiv (-1)^0 5^0 \pmod {2^e} \\ 3 \equiv (-1)^1 5^0 \pmod {2^e} \\ \end{cases} e=2⇒{1≡(−1)050(mod2e)3≡(−1)150(mod2e)
∴ \therefore ∴ 可以使用选定的原根和上面的 2 e 2^e 2e的剩余表示出指数系
( α , β , γ 1 , γ 2 , ⋯ , γ n ) (\alpha, \beta, \gamma_1, \gamma_2, \cdots, \gamma_n) (α,β,γ1,γ2,⋯,γn)
α ∈ { 0 , 1 } , β ∈ [ 0 , 2 t 0 − 2 − 1 ] , ∀ j ∈ [ 1 , n ] γ j ∈ [ 1 , ϕ ( p j t j ) ] \alpha \in \{0, 1 \}, \beta \in [0, 2^{t_0 - 2} - 1], \forall_{j \in [1, n]}\gamma_j \in [1, \phi(p_j^{t_j})] α∈{0,1},β∈[0,2t0−2−1],∀j∈[1,n]γj∈[1,ϕ(pjtj)]
其中 α , β \alpha, \beta α,β为 2 t 0 2^{t_0} 2t0的指数系,其余的 γ j \gamma_j γj是 p j t j , j ∈ [ 1 , n ] p_j^{t_j}, j \in [1, n] pjtj,j∈[1,n]的指数表示
可以证明指数系唯一,且具有对数那样的运算规则,即
( α , β , γ 1 , γ 2 , ⋯ , γ n ) k = ( k α , k β , k γ 1 , k γ 2 , ⋯ , k γ n ) (\alpha, \beta, \gamma_1, \gamma_2, \cdots, \gamma_n)^k = (k\alpha, k\beta, k\gamma_1, k\gamma_2, \cdots, k\gamma_n) (α,β,γ1,γ2,⋯,γn)k=(kα,kβ,kγ1,kγ2,⋯,kγn)
( α , β , γ 1 , γ 2 , ⋯ , γ n ) ( α ′ , β ′ , γ 1 ′ , γ 2 ′ , ⋯ , γ n ′ ) = ( α + α ′ , β + β ′ , γ 1 + γ 1 ′ , γ 2 + γ 2 ′ , ⋯ , γ n + γ n ′ ) (\alpha, \beta, \gamma_1, \gamma_2, \cdots, \gamma_n)(\alpha', \beta', \gamma_1', \gamma_2', \cdots, \gamma_n') = (\alpha + \alpha', \beta + \beta', \gamma_1 + \gamma_1', \gamma_2 + \gamma_2', \cdots, \gamma_n+\gamma_n') (α,β,γ1,γ2,⋯,γn)(α′,β′,γ1′,γ2′,⋯,γn′)=(α+α′,β+β′,γ1+γ1′,γ2+γ2′,⋯,γn+γn′)
设 d 0 , d 1 , ⋯ , d n d_0, d_1, \cdots, d_n d0,d1,⋯,dn分别表示 2 t 0 , p 1 t 1 , ⋯ , p n t n 2^{t_0}, p_1^{t_1}, \cdots, p_n^{t_n} 2t0,p1t1,⋯,pntn的解个数,先考虑 2 t 0 2^{t_0} 2t0情形
x k ≡ c ( m o d 2 t 0 ) ⇒ k ( α , β ) ≡ ( α c , β c ) ( m o d ( 2 , 2 t 0 − 2 ) ) x^k \equiv c \pmod {2^{t_0}} \Rightarrow k(\alpha, \beta) \equiv (\alpha_c, \beta_c) \pmod {(2, 2^{t_0 - 2})} xk≡c(mod2t0)⇒k(α,β)≡(αc,βc)(mod(2,2t0−2)),其中 ( , ) (, ) (,)表示分量,即有
{ k α ≡ α c ( m o d 2 ) k β ≡ β c ( m o d 2 t 0 − 2 ) \begin{cases} k\alpha \equiv \alpha_c \pmod 2 \\ k\beta \equiv \beta_c \pmod {2^{t_0-2}} \\ \end{cases} {kα≡αc(mod2)kβ≡βc(mod2t0−2)
2 ∤ k ⇒ c 2 \nmid k \Rightarrow c 2∤k⇒c可为任意数
2 ∣ k ⇒ { α c ≡ 0 ( m o d 2 ) β c ≡ 0 ( m o d ( k , 2 t 0 − 2 ) ) 2 \mid k \Rightarrow \begin{cases} \alpha_c \equiv 0 \pmod 2 \\ \beta_c \equiv 0 \pmod {(k, {2^{t_0-2}})} \\ \end{cases} 2∣k⇒{αc≡0(mod2)βc≡0(mod(k,2t0−2))
可以得到解一共有
d 0 = 2 t 0 − 1 ( k , 2 ) ( k , 2 t 0 − 2 ) d_0 = \frac{2^{t_0-1}}{(k, 2)(k, {2^{t_0-2}})} d0=(k,2)(k,2t0−2)2t0−1
上面是对 t 0 ≥ 2 t_0 \ge 2 t0≥2时成立,对于 t 0 = 1 t_0 = 1 t0=1,可知 1 1 1是 2 2 2的原根,因此 ( k , 1 ) = 1 ⇒ d 0 = 1 (k, 1) = 1 \Rightarrow d_0 = 1 (k,1)=1⇒d0=1
类似对于 j ∈ [ 1 , n ] , p j t j j \in [1, n], p_j^{t_j} j∈[1,n],pjtj,有
d j = ϕ ( p j t j ) ( k , ϕ ( p j t j ) ) d_j = \frac{\phi(p_j^{t_j})}{(k, \phi(p_j^{t_j}))} dj=(k,ϕ(pjtj))ϕ(pjtj)
所有解的个数 d = d 0 d 1 ⋯ d n d = d_0d_1 \cdots d_n d=d0d1⋯dn,即
d = { ϕ ( n ) ∏ j = 1 n ( k , ϕ ( p j t j ) ) , t 0 ∈ 0 , 1 ϕ ( n ) ( k , 2 ) ( k , 2 t 0 − 2 ) ∏ j = 1 n ( k , ϕ ( p j t j ) ) , t 0 ≥ 2 d = \begin{cases} \frac{\phi(n)}{\prod_{j=1}^n (k, \phi(p_j^{t_j}))}, & t_0 \in {0, 1}\\ \frac{\phi(n)}{(k, 2)(k, {2^{t_0-2}})\prod_{j=1}^n (k, \phi(p_j^{t_j}))}, & t_0 \ge 2\\ \end{cases} d=⎩⎨⎧∏j=1n(k,ϕ(pjtj))ϕ(n),(k,2)(k,2t0−2)∏j=1n(k,ϕ(pjtj))ϕ(n),t0∈0,1t0≥2
最后用具体数字来验证一下
n = 2 ∗ 3 , k = 2 , S = { 1 } n= 2*3, k = 2, S = \{ 1 \} n=2∗3,k=2,S={1},由第一种可知结果相等
n = 2 2 ∗ 3 , k = 3 , S = { 1 , 5 , 7 , 11 } n= 2^2*3, k = 3, S = \{ 1, 5, 7, 11 \} n=22∗3,k=3,S={1,5,7,11},由第二种可知结果相等
对于任一有解的 c c c出现的次数可由上面 ϕ ( n ) d \frac{\phi(n)}{d} dϕ(n)取得