《初等数论》13.4节习题8的解答

证明:如果 C k = p k q k C_k = \frac{p_k}{q_k} Ck=qkpk d \sqrt{d} d 的简单连分数展开式的收敛子,那么 ∣ p k 2 − d q k 2 ∣ < 1 + 2 d |p_k^2 - dq_k^2| < 1 + 2\sqrt{d} pk2dqk2<1+2d .

思路:已知 p k 2 − d q k 2 = ( − 1 ) k − 1 Q k + 1 p_k^2 - dq_k^2 = (-1)^{k-1}Q_{k+1} pk2dqk2=(1)k1Qk+1,那么可以是否可以求得 Q k + 1 Q_{k+1} Qk+1的取值范围,然而可知的是 α k = P k + d Q k > 0 , α k ′ = P k − d Q k ∈ ( − 1 , 0 ) \alpha_k = \frac{P_k + \sqrt{d}}{Q_k} > 0, \alpha_k' = \frac{P_k - \sqrt{d}}{Q_k} \in (-1, 0) αk=QkPk+d >0,αk=QkPkd (1,0),因为 α k , k ∈ Z + \alpha_k, k \in Z_+ αk,kZ+是纯循环的,从而可得 α k − α k ′ = 2 d Q k > 0 ⇒ Q k > 0 \alpha_k - \alpha_k' = \frac{2\sqrt{d}}{Q_k} > 0 \Rightarrow Q_k > 0 αkαk=Qk2d >0Qk>0,又

Q k + 1 = d − P k + 1 2 Q k ⇒ P k + 1 = d − Q k Q k + 1 < d Q_{k+1} = \frac{d - P_{k+1}^2}{Q_k} \Rightarrow P_{k+1} = \sqrt{d - Q_kQ_{k+1}} < \sqrt{d} Qk+1=QkdPk+12Pk+1=dQkQk+1 <d
Q k + 1 ≤ Q k Q k + 1 = d − P k + 1 2 < d Q_{k+1} \le Q_kQ_{k+1} = d - P_{k+1}^2 < d Qk+1QkQk+1=dPk+12<d

没有得出一个更好的上界,故而尝试采用逆推,遇到什么就证明什么

证:

∣ p k 2 − d q k 2 ∣ = ∣ p k − q k d ∣ ∣ p k + q k d ∣ |p_k^2 - dq_k^2| = |p_k - q_k\sqrt{d}||p_k + q_k\sqrt{d}| pk2dqk2=pkqkd pk+qkd

= q k 2 ∣ C k − d ∣ ∣ C k + d ∣ < 1 + 2 d = q_k^2|C_k - \sqrt{d}||C_k + \sqrt{d}| < 1 + 2\sqrt{d} =qk2Ckd Ck+d <1+2d

⇔ ∣ C k − d ∣ ∣ C k + d ∣ < ( 1 + 2 d ) q k 2 \Leftrightarrow |C_k - \sqrt{d}||C_k + \sqrt{d}| < (1 + 2\sqrt{d})q_k^2 Ckd Ck+d <(1+2d )qk2

⇔ C k 2 < ( 1 + 2 d ) q k 2 + d \Leftrightarrow C_k^2 < (1 + 2\sqrt{d})q_k^2 + d Ck2<(1+2d )qk2+d

∵ ∀ k ∈ Z + , j ∈ Z + C 2 k − 1 > C 2 k + 1 , C 2 ( j + 1 ) < C 2 j , C 2 k − 1 > C 2 j \because \forall_{k \in Z_+, j \in Z_+}C_{2k - 1} > C_{2k+1}, C_{2(j+1)} < C_{2j}, C_{2k - 1} > C_{2j} kZ+,jZ+C2k1>C2k+1,C2(j+1)<C2j,C2k1>C2j

∴ max ⁡ ( C 0 , C 1 , . . . ) = C 1 \therefore \max(C_0, C_1, ...) = C_1 max(C0,C1,...)=C1

∴ ⇔ C k 2 < C 1 2 = ( a 0 + 1 a 1 ) 2 < ( d + 1 ) 2 = 1 + 2 d + d = ( 1 + 2 d ) + d ≤ ( 1 + 2 d ) q k 2 + d \therefore \Leftrightarrow C_k^2 < C_1^2 = (a_0 + \frac{1}{a_1})^2 < (\sqrt{d} + 1)^2 = 1 + 2\sqrt{d} + d = (1 + 2\sqrt{d}) + d \le (1 + 2\sqrt{d})q_k^2 + d Ck2<C12=(a0+a11)2<(d +1)2=1+2d +d=(1+2d )+d(1+2d )qk2+d

∴ \therefore 得证

经过反思后,发现上面证明有个致命的错误:

∣ C k − d ∣ ∣ C k + d ∣ < ( 1 + 2 d ) q k 2 |C_k - \sqrt{d}||C_k + \sqrt{d}| < (1 + 2\sqrt{d})q_k^2 Ckd Ck+d <(1+2d )qk2

下面给出严格证明:

∣ p k 2 − d q k 2 ∣ = q k 2 ∣ C k − d ∣ ∣ C k + d ∣ |p_k^2 - dq_k^2| = q_k^2|C_k - \sqrt{d}||C_k + \sqrt{d}| pk2dqk2=qk2Ckd Ck+d

< q k 2 × 1 q k q k + 1 × ∣ C k + d ∣ < q_k^2 \times \frac{1}{q_kq_{k+1}} \times |C_k + \sqrt{d}| <qk2×qkqk+11×Ck+d

< q k 2 × 1 q k 2 × ∣ C k + d ∣ < q_k^2 \times \frac{1}{q_k^2} \times |C_k + \sqrt{d}| <qk2×qk21×Ck+d

< C k + d < C_k + \sqrt{d} <Ck+d

≤ C 1 + d \le C_1 + \sqrt{d} C1+d

= a 0 + 1 a 1 + d < d + 1 + d = 1 + 2 d = a_0 + \frac{1}{a_1} + \sqrt{d} < \sqrt{d} + 1 + \sqrt{d} = 1 + 2\sqrt{d} =a0+a11+d <d +1+d =1+2d

∴ ∀ k ∈ Z + ∪ { 0 } ∣ Q k ∣ < 1 + 2 d \therefore \forall_{k \in Z_+ \cup \{ 0 \}} |Q_k| < 1 + 2\sqrt{d} kZ+{0}Qk<1+2d

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值