《拓扑学第二版》学习之第一章集合轮与逻辑之杂想与体会

α . \alpha. α. A A A是一个集合, 那么不存在单射 f : P ( A ) → A f: \mathcal P(A) \to A f:P(A)A,即不存在满射 g : A → P ( A ) g: A \to \mathcal{P}(A) g:AP(A).(定理 7.8 7.8 7.8)

感想:对于证明只要对于任意函数 g : A → P ( A ) g: A \to \mathcal P(A) g:AP(A)都不是满射即可,只需找到一个
B ∈ P ( A ) ∧ B ∉ g ( A ) B \in \mathcal{P}(A) \wedge B \notin g(A) BP(A)B/g(A),但是对于书中对这样集合的构造还是感到很巧妙,其中

B = { a ∣ a ∈ A − g ( a ) } B = \{ a \mid a \in A - g(a) \} B={aaAg(a)}

而如果采用类似证明 { 0 , 1 } w \{ 0, 1 \}^w {0,1}w不可数那样,可以利用良序定理将 A A A良序化,从而 A = { a α } α ∈ J A = \{ a_{\alpha} \}_{\alpha \in J} A={aα}αJ,其中 J J J为其一一对应的良序集,这里不一定有 J ⊂ Z + J \subset Z_+ JZ+,因为 A A A可能是不可数的,因此存在一一对应函数

h : P ( A ) → { 0 , 1 } J h: \mathcal{P}(A) \to \{ 0, 1 \}^J h:P(A){0,1}J

继而需要证明复合函数不是满射

i = h ∘ g : A → P ( A ) → { 0 , 1 } J i = h \circ g: A \to \mathcal{P}(A) \to \{ 0, 1 \}^J i=hg:AP(A){0,1}J

类似的可以从 i ( A ) i(A) i(A)里构造一个不在 i ( A ) i(A) i(A)但在 { 0 , 1 } J \{ 0, 1 \}^J {0,1}J的元素 b b b

i ( a α ) α ∈ J = ( x a J 1 , x a J 2 , ⋯   ) i(a_\alpha)_{\alpha \in J} = (x_{aJ_1}, x_{aJ_2}, \cdots) i(aα)αJ=(xaJ1,xaJ2,)

b J α = { 0 , x J α J α = 1 1 , x J α J α = 0 b_{J_\alpha} = \begin{cases} 0, & x_{J_\alpha J_\alpha} = 1\\ 1, & x_{J_\alpha J_\alpha} = 0 \end{cases} bJα={0,1,xJαJα=1xJαJα=0

这里指标不好表示,姑且使用 J 1 J_1 J1这样方便

也可以像上面那样

b J a = { 0 , a ∈ g ( a ) 1 , a ∉ g ( a ) b_{J_a} = \begin{cases} 0, & a \in g(a)\\ 1, & a \notin g(a) \end{cases} bJa={0,1,ag(a)a/g(a)

β . \beta. β. 对基数的定义和理解,尤其对于无限集,没有具体值,只可比较

定义:对于集合 A , B A,B A,B,如果存在一个一一对应则基数相同,不然若存在单射 f : A → B f: A \to B f:AB,但不存在单射 g : B → A g: B \to A g:BA,那么 A A A的基数小于B.

7.6 ( a ) : B ⊂ A , ∃ f : A → B 7.6(a): B \subset A, \exists f: A \to B 7.6(a):BA,f:AB为单射,则两者基数相同,进一步可得 B = A B = A B=A

前言:第一眼看到单射总是会下意识地认为定义域的基数会小于值域,实则不然,对于有限集确实如此,但对于无限集则很难说,无限啊,不由地想起了无限循环小数表示成分数形式的过程

x = 0. c ‾ , c = c 1 c 2 ⋯ c n x = 0.\overline{c}, c = c_1c_2 \cdots c_n x=0.c,c=c1c2cn

∴ 1 0 n x = c + x ⇒ x = c 1 0 n − 1 \therefore 10^nx = c + x \Rightarrow x = \frac{c}{10^n - 1} 10nx=c+xx=10n1c

其中就是因为是无限循环才能有此等式,这里也同样证明了 0. 9 ‾ = 9 10 − 1 = 1 0.\overline9 = \frac{9}{10 - 1} = 1 0.9=1019=1

对于这个问题另外想到两种证法:

0. 9 ‾ = 0. 1 ‾ ∗ 9 = 1 9 ∗ 9 = 1 0.\overline9 = 0.\overline{1} * 9 = \frac{1}{9} * 9 = 1 0.9=0.19=919=1

0. 9 ‾ = 0.9 + 0.09 + ⋯ = 0.9 + 0.9 ∗ 1 10 + 0.9 ∗ ( 1 10 ) 2 + ⋯ 0.\overline9 = 0.9 + 0.09 + \cdots = 0.9 + 0.9 * \frac{1}{10} + 0.9 * (\frac{1}{10})^2 + \cdots 0.9=0.9+0.09+=0.9+0.9101+0.9(101)2+

= lim ⁡ n → ∞ 0.9 1 − ( 1 10 ) n 1 − 1 10 = 0.9 ∗ 10 9 = 1 = \lim_{n \to \infty}0.9\frac{1 - (\frac{1}{10})^n}{1 - \frac{1}{10}} = 0.9 * \frac{10}{9} = 1 =limn0.911011(101)n=0.9910=1

证(来自提示):

A n = { A , n = 1 f ( A n − 1 ) , n > 1 A_n = \begin{cases} A, & n = 1\\ f(A_{n-1}), & n > 1 \end{cases} An={A,f(An1),n=1n>1

B n = { B , n = 1 f ( B n − 1 ) , n > 1 B_n = \begin{cases} B, & n = 1\\ f(B_{n-1}), & n > 1 \end{cases} Bn={B,f(Bn1),n=1n>1

∵ A 1 = A ⊃ B = B 1 \because A_1 = A \supset B = B_1 A1=AB=B1

∴ B 1 ⊃ A 2 = f ( A 1 ) ⊂ B = B 1 \therefore B_1 \supset A_2 = f(A_1) \subset B = B_1 B1A2=f(A1)B=B1

∴ A n ⊃ B n , B n ⊃ A n + 1 \therefore A_n \supset B_n, B_n \supset A_{n+1} AnBn,BnAn+1,因为 B ⊂ A ⇒ f ( B ) ⊂ f ( A ) B \subset A \Rightarrow f(B) \subset f(A) BAf(B)f(A)

∴ A 1 ⊃ B 1 ⊃ A 2 ⊃ B 2 ⊃ ⋯ \therefore A_1 \supset B_1 \supset A_2 \supset B_2 \supset \cdots A1B1A2B2

如图:
在这里插入图片描述

构造函数:

h ( x ) = { f ( x ) , ∃ n ∈ Z + → x ∈ A n − B n x , e l s e h(x) = \begin{cases} f(x), & \exists n \in Z_+ \to x \in A_n - B_n\\ x, & else \end{cases} h(x)={f(x),x,nZ+xAnBnelse

这里因为是单射所以有 f ( A n ) − f ( B n ) = f ( A n − B n ) f(A_n) - f(B_n) = f(A_n - B_n) f(An)f(Bn)=f(AnBn)

可知 ⋃ A n − B n \bigcup A_n - B_n AnBn是上图蓝色阴影区域,其他情形是红色阴影区域,即
⋃ B n − A n + 1 \bigcup B_n - A_{n+1} BnAn+1

∵ f ( A n − B n ) = f ( A n ) − f ( B n ) = A n + 1 − B n + 1 \because f(A_n - B_n) = f(A_n) - f(B_n) = A_{n+1} - B_{n+1} f(AnBn)=f(An)f(Bn)=An+1Bn+1

∴ h ( A ) = ( ⋃ n = 2 ∞ A n − B n ) ∪ ( ⋃ n = 1 ∞ B n − A n + 1 ) = B \therefore h(A) = (\bigcup_{n = 2}^{\infty} A_n - B_n) \cup (\bigcup_{n = 1}^{\infty} B_n - A_{n+1}) = B h(A)=(n=2AnBn)(n=1BnAn+1)=B

因为两种情形的值域无交,且两种都是单射,因而 h h h是单射,也是满射

∴ A , B \therefore A, B A,B基数相同

对于 S c h r o e d e r − B e r n s t e i n Schroeder-Bernstein SchroederBernstein定理,则很简单就可以得出

∵ \because 单射 f : A → B f: A \to B f:AB,单射 g : B → A g: B \to A g:BA

∴ f ∘ g : B → f ( A ) \therefore f \circ g: B \to f(A) fg:Bf(A)是单射,且其中 B ⊃ f ( A ) B \supset f(A) Bf(A),应用上题可得 B , f ( A ) B, f(A) B,f(A)基数相同,又 f ( A ) , A f(A), A f(A),A基数相同,因而 A , B A, B A,B基数相同,也可以作出一一对应函数

想到哪写到哪,想当然了,上面有两处问题,一处是未证明的,另一处是错误的,集合论里很多对有限集成立的命题,然对于无限集则需谨慎对待,须得严格证明才可.

( 1 ) . (1). (1). 未证明点:基数的可比较性

题:设 A , B A, B A,B是两个集合,或者它们有相同的基数,或者一个集合的基数大于另一个集合的基数. ( 题 11.11 ) (题11.11) (11.11)

证:

根据良序定理,存在全序关系使得 A , B A, B A,B成为良序集,设为 A ′ , B ′ A', B' A,B,可知基数不变

这里为了方便,设求集合的基数函数 c c c,即 A A A的基数 = c ( A ) , ( c a r d i n a l i t y ) = c(A), (cardinality) =c(A),(cardinality)

a . a. a. 若不存在满射 f : A ′ → B ′ f: A' \to B' f:AB,则可以构造单射

h ( x ) = [ B ′ − h ( S x ) ] h(x) = [B' - h(S_x)] h(x)=[Bh(Sx)]的最小元

∵ m ∈ A ′ , n ∈ A ′ , m < n ⇒ h ( m ) ∈ h ( S n ) ∌ h ( n ) \because m \in A', n \in A', m < n \Rightarrow h(m) \in h(S_n) \notni h(n) mA,nA,m<nh(m)h(Sn)h(n)

∴ c ( A ) = c ( A ′ ) < c ( B ′ ) = c ( B ) \therefore c(A) = c(A') < c(B') = c(B) c(A)=c(A)<c(B)=c(B)

b . b. b. 若不存在满射 f : B ′ → A ′ f: B' \to A' f:BA,由上题同理可得 c ( B ) < c ( A ) c(B) < c(A) c(B)<c(A)

c . c. c.若存在满射 f : A ′ → B ′ f: A' \to B' f:AB与满射 g : B ′ → A ′ g: B' \to A' g:BA,则根据 S c h r o e d e r − B e r n s t e i n Schroeder-Bernstein SchroederBernstein定理可知两者有相同基数

∴ \therefore 命题得证

( 2 ) . (2). (2). 错误点:若 B ⊆ A B \subseteq A BA,且 c ( B ) = c ( A ) c(B) = c(A) c(B)=c(A),那么有 B = A B = A B=A

这是不对的

反例 1. 1. 1. { 1 } × Z + ⊊ Z + × Z + \{ 1 \} \times Z_+ \subsetneq Z_+ \times Z_+ {1}×Z+Z+×Z+,因为都是可数的,因而存在一一对应印射,所以基数相同.一一对应函数的构造如下

f ( x , y ) = ( x + y − 1 , y ) f(x, y) = (x + y - 1, y) f(x,y)=(x+y1,y)

g ( x , y ) = ( 1 , ( x − 1 ) x 2 + y ) , y < x g(x, y) = (1, \frac{(x-1)x}{2} + y), y < x g(x,y)=(1,2(x1)x+y),y<x

上面每个都是一一对应,因而复合函数 g ∘ f : Z + × Z + → 1 × Z + g \circ f: Z_+ \times Z_+ \to {1} \times Z_+ gf:Z+×Z+1×Z+也是一一对应

上面的一一对应函数是书上给出的,其实只要像除余那样都可,如

g ( x , y ) = ( 1 , ( x − 1 ) ! + y ) g(x, y) = (1, (x - 1)! + y) g(x,y)=(1,(x1)!+y),注意 0 ! = 0 0! = 0 0!=0

反例 2. 2. 2. Z + w Z_{+}^w Z+w { 0 , 1 } w {\{ 0, 1 \}}^w {0,1}w,这是书上的习题

冥想:构造一个一一对应函数:一个想法是直接把 Z + w Z_{+}^w Z+w的元素换算等价的二进制生成到 { 0 , 1 } w {\{ 0, 1 \}}^w {0,1}w,但这是不能的,因为对于结果来说并不是单射,故而想到了添加用于标识每个整数的二进制长度这样的印射,这样就得到了一一对应函数,这不禁想起了计算机里的整数、浮点数的存储方式,也是通过类似的规则进行存读取,而对于整数有所不同,因为采用的是反码,但是也有 1 1 1位符号位,其他位数表示数字;而于 32 32 32位浮点型,则包含 1 1 1位符号位, 8 8 8位指数位, 23 23 23位小数位,因为采用的是科学计算法,这里说的是 I E E E IEEE IEEE标准,这里不考虑机器大小字节问题;还想起了网络数据收发,对于数据包都要一个长度,对于字符串这样的数组都会现在开始处添加长度,一般长度都是特定长度类型,必须严格定义,因为很可能机器位数不同,还要考虑大小字节的问题.

证:构造函数

f ( ( x 1 , x 2 , ⋯   ) ) = ( x 1 的 二 进 制 位 数 个 0 0 , 0 , ⋯ ⏞ , x 1 的 二 进 制 表 示 , x 2 的 二 进 制 位 数 个 0 0 , 0 , ⋯ ⏞ , x 2 的 二 进 制 表 示 , ⋯   ) f((x_1, x_2, \cdots)) = (\begin{matrix} x_1的二进制位数个0 \\ \overbrace{0, 0, \cdots}\end{matrix}, x_1的二进制表示, \begin{matrix} x_2的二进制位数个0 \\ \overbrace{0, 0, \cdots}\end{matrix}, x_2的二进制表示, \cdots) f((x1,x2,))=(x100,0, ,x1,x200,0, ,x2,)

容易验证 f : Z + × Z + → { 0 , 1 } w f: Z_+ \times Z_+ \to {\{ 0, 1 \}}^w f:Z+×Z+{0,1}w 一一对应

对于任意集合 A A A,可以构造一个基数递增序列

A n = { A , n = 1 P ( A n − 1 ) , n > 1 A_n = \begin{cases} A, & n = 1\\ \mathcal{P}(A_{n-1}), & n > 1 \end{cases} An={A,P(An1),n=1n>1

即使 A = ∅ A = \varnothing A=,依然成立,因为

P ( A ) = { ∅ } \mathcal{P}(A) = \{ \varnothing \} P(A)={}

P ( P ( A ) ) = { ∅ , { ∅ } } \mathcal{P}(\mathcal{P}(A)) = \{ \varnothing, \{ \varnothing \} \} P(P(A))={,{}}

尤其当 A = Z + A = Z_+ A=Z+时,可知 A 2 = P ( A ) A_2 = \mathcal{P}(A) A2=P(A)是不可数的,因此 A n , n > 1 A_n, n > 1 An,n>1都是不可数的且基数递增.

从中可以发现,对于有限集没什么可说的,对于可数无限集,基数都是相同的,因为都存在到 Z + Z_+ Z+的一一对应,而对于不可数集则存在大小之分,同样是无限集,可数与不可数不一样,不可数集之间也存在不同.

于此,俺觉得连续统假设是不正确的,简单地以为,无限集分为可数与不可数,若存在一个集合的基数在可数的 Z + Z_+ Z+与不可数的 R R R之间,那么这个集合是可数的还是不可数的,俺想应该是不可数的,不然就和 Z + Z_+ Z+一一对应了,这个集合的基数至少应该和极小不可数良序集 S Ω S_\Omega SΩ的基数相同,而能用一种全序关系使得 R R R成为良序集(根据良序定理是存在的),而 S Ω S_\Omega SΩ只在一处不可数,而对于良序化的 R R R而言则很难说,因为有理数是可数的很容易良序化,无理数则是不可数的,有点像是在任一无理数处都是不可数的,如果是这样的则它们的序型不同.如果能够找到一个 S Ω S_\Omega SΩ的集合就厉害了.

γ . \gamma. γ. 极大原理

这里有个证明环:

H a u s d o r f f 极 大 原 理 ⇒ Z o r n 引 理 ⇒ K u r a t o w s k i 引 理 ⇒ T u k e y 引 理 ⇒ H a u s d o r f f 极 大 原 理 Hausdorff极大原理 \\ \Rightarrow Zorn引理 \Rightarrow Kuratowski引理 \Rightarrow Tukey引理 \\ \Rightarrow Hausdorff极大原理 HausdorffZornKuratowskiTukeyHausdorff

对于 Z o r n 引 理 ⇒ H a u s d o r f f 极 大 原 理 Zorn引理 \Rightarrow Hausdorff极大原理 ZornHausdorff的简单直接证明如下:

b n = { c ( A ) , n = 1 c ( A − { b 1 , ⋯   , b n − 1 } ) , n > 1 b_n = \begin{cases} c(A), & n = 1\\ c(A - \{b_1, \cdots, b_{n-1} \}), & n > 1 \end{cases} bn={c(A),c(A{b1,,bn1}),n=1n>1

B n = { b 1 , ⋯   , b n } B_n = \{b_1, \cdots, b_n\} Bn={b1,,bn}

那么构成一个真包含全序关系 B 1 ⊊ B 2 ⊊ ⋯ B_1 \subsetneq B_2 \subsetneq \cdots B1B2

B = ⋃ n ∈ Z + B n B = \bigcup_{n \in Z_+}B_n B=nZ+Bn,可知 B B B为上面全序子集族一个上界,因而根据 Z o r n Zorn Zorn引理可知存在一个极大元 B ′ B' B,这个即是所求的极大全序子集

而其他的引理是对这个过程细化和引理化

关于选择公里、良序定理、极大原理的等价性则无言

δ . \delta. δ. 最后说一下应用极大原理证明向量空间存在一个基.

题: V V V为向量空间,证明 V V V有一个基.

证:

可以任意选取一个非零向量 a ∈ V a \in V aV,那么 A = a A = {a} A=a是线性无关的

如果对于任一向量 v ∈ V v \in V vV不能由 A A A线性表示,那么 A ∪ v A \cup {v} Av是无关的,这样就构成了一个真包含的全序关系子集族,根据 Z o r n Zorn Zorn引理存在一个极大元,即是所求的基

如果不用集合论去证明,单从线性代数中去证明往往免不了从低维到高维的证明,这样就是类型相关的,而不想集合论这样脱离的研究的具体对象,直接从根源上说明这所有,因而拓扑学不是研究特定对象,而是所有对象的很抽象的广泛研究,怪不得说拓扑学是门跨时代的学科.

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值