977.有序数组的平方
(版本二)暴力排序法
class Solution:
def sortedSquares(self, nums: List[int]) -> List[int]:
for i in range(len(nums)):
nums[i] *= nums[i]
nums.sort()
return nums
每个数平方之后,排个序 暴力排序解法O(n + nlog n)
2.双指针法
由于负数的存在,负数平方之后可能就会成为最大数,因此数组平方后的最大值就应该在数组的两端,不是最左边就是最右边,不可能是中间。
此时可以考虑双指针法,i指向起始位置,j指向终止位置。
定义一个新的数组result
来装进行平方之后的数组元素。
定义一个索引下标,k = nums.size() - 1; 下标的作用:新的数组要从大到小来更新
因为每次取的时候都是取了一个最大值(两头向中间取,先取最大,再取次大)。
这样的话,更新result数组也要下标由大到小来更新,最后得到的这个result数组才是一个按非递减顺序排序(元素从小到大)的集合。
通过for循环定义2个下标 i
和 j
,
循环终止的条件:只要 i <= j
就继续执行该循环
(版本一)双指针法
class Solution:
def sortedSquares(self, nums: List[int]) -> List[int]:
l, r, i = 0, len(nums)-1, len(nums)-1
res = [float('inf')] * len(nums) # 需要提前定义列表,存放结果
while l <= r:
if nums[l] ** 2 < nums[r] ** 2: # 左右边界进行对比,找出最大值
res[i] = nums[r] ** 2
r -= 1 # 右指针往左移动
else:
res[i] = nums[l] ** 2
l += 1 # 左指针往右移动
i -= 1 # 存放结果的指针需要往前平移一位
return res
#First try
class Solution:
def sortedSquares(self, nums: List[int]) -> List[int]:
left = 0
right = len(nums) - 1
i = len(nums) - 1
result = [0] * len(nums)
while left <= right:
if nums[left] * nums[left] > nums[right] * nums[right]:
result[i] = nums[left] * nums[left]
i -= 1
left += 1
else:
result[i] = nums[right] * nums[right]
i -= 1
right -= 1
return result
res = [0.0] * len(nums) # 用 0 初始化结果数组 不用写成list[0], [0]已经是list. i-=1 可以放在if else外面,省去一行。
209.长度最小的子数组
最直接的想法:2层for循环进行遍历:第一层for循环控制区间的起始位置,第二层for循环控制区间的终止位置。
把数组的所有区间情况都遍历出来,然后找到 >= target
的最小区间长度。
在这个区间里面不断搜索,把所有区间情况都枚举出来,然后判断 >= target
的最小长度是多少,最后返回这个最小长度。
(版本二)暴力法
class Solution:
def minSubArrayLen(self, s: int, nums: List[int]) -> int:
l = len(nums)
min_len = float('inf')
for i in range(l):
cur_sum = 0
for j in range(i, l):
cur_sum += nums[j]
if cur_sum >= s:
min_len = min(min_len, j - i + 1)
break
return min_len if min_len != float('inf') else 0
- 时间复杂度:O(n^2)
- 空间复杂度:O(1)
(版本一)滑动窗口法
class Solution:
def minSubArrayLen(self, s: int, nums: List[int]) -> int:
l = len(nums)
left = 0
right = 0
min_len = float('inf')
cur_sum = 0 #当前的累加值
while right < l:
cur_sum += nums[right]
while cur_sum >= s: # 当前累加值大于目标值
min_len = min(min_len, right - left + 1)
cur_sum -= nums[left]
left += 1
right += 1
return min_len if min_len != float('inf') else 0
#FT
class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
l = len(nums)
left = 0
right = 0
min_len = float('inf')
cur_sum = 0
while right < l:
cur_sum += nums[right]
while cur_sum >= target:
min_len = min(min_len, right - left + 1)
cur_sum -= nums[left]
left += 1
right +=1
return min_len if min_len != float('inf') else 0
不能单独return min_len 需要加上判别为0的情况 if min_len != float('inf') else 0
while right<l 是len(nums) NOT left.因为右指针要从末端开始计算,否则跟暴力解法没区别。从而将O(n^2)暴力解法降为O(n)
59.螺旋矩阵Ⅱ
题目链接:59.螺旋矩阵Ⅱ
不过转圈这个过程需要处理的边界条件很多。
左闭右开,处理第一个节点,最后一个节点留给下一条边遍历的时候再做处理,这样4条边的遍历规则就统一了。
每一条规则都需要仔细揣摩,搞明白。for中的条件跟nums[i][j] 对应的角标
- 时间复杂度 O(n^2): 模拟遍历二维矩阵的时间
- 空间复杂度 O(1)
class Solution:
def generateMatrix(self, n: int) -> List[List[int]]:
nums = [[0] * n for _ in range(n)]
startx, starty = 0, 0 # 起始点
loop, mid = n // 2, n // 2 # 迭代次数、n为奇数时,矩阵的中心点
count = 1 # 计数
for offset in range(1, loop + 1) : # 每循环一层偏移量加1,偏移量从1开始
for i in range(starty, n - offset) : # 从左至右,左闭右开
nums[startx][i] = count
count += 1
for i in range(startx, n - offset) : # 从上至下
nums[i][n - offset] = count
count += 1
for i in range(n - offset, starty, -1) : # 从右至左
nums[n - offset][i] = count
count += 1
for i in range(n - offset, startx, -1) : # 从下至上
nums[i][starty] = count
count += 1
startx += 1 # 更新起始点
starty += 1
if n % 2 != 0 : # n为奇数时,填充中心点
nums[mid][mid] = count
return nums
需要弄清楚