【智能手表表带】案例分享——AI深度学习在智能手表表带的外观缺陷检测中的应用

随着智能手表等产品的迭代速度越来越快,传统机器视觉不能自动学习瑕疵特征、难以分析无规律图像、面对海量数据无法提高检测精度等检测局限性问题越来越突出,于是,东声智能开始探索将人工智能深度学习技术应用到3C消费品的检测中。

检测项目-

智能手表表带的外观缺陷检测

检测难点-

该项目存在以下几个难点,缺陷种类多,包括划痕、凹陷、污渍等;表带材质多样化,包括金属、橡胶、尼龙等;缺陷数据量少;对算法和模型的效率要求高;传统的检测算法满足不了现有的检测需求。

东声AI解决方案-

基于HanddleAI软件平台的的缺陷分割算法&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值