机器视觉在汽车零部件外观缺陷检测中的应用

本文探讨了机械加工零件表面纹理缺陷的成因,特别是工艺流程和数控参数设计的影响。通过介绍机器视觉技术在零件检测中的应用,强调其在铝铸件和零部件冲压AOI检测中的高精度和高速度,以及东声智能作为AI工业视觉领军者在这一领域的技术创新和解决方案。
摘要由CSDN通过智能技术生成

如果机械加工零件出现表面纹理缺陷,就会受到机械加工程序的影响。 机械加工程序具体是指切割、研磨、锻造等机械加工零件的工艺流程,当不同的工艺流程作用于零件加工产品时,会对机械加工零件的表面产生一定的影响。 在研磨过程中,容易对机械加工零件的表面产生一定的影响,导致机械加工零件表面出现纹理缺陷问题。 另外,在零件加工过程的处理过程中,如果零件加工过程的数控参数设计不合理,也会引起表面纹理缺陷问题。

为了提高机械零件的合格标准,在零件的检测过程中,使用机器视觉技术代替人工目检已是主流趋势。通常一套完整的视觉检测系统有算法软件、视觉成像方案以及相关AI硬件组成,可实现缺陷检测的高准确率、高检测速度。

  • 铝铸件表面外观检测

铝铸件常见的缺陷有变形、凸起、磕伤、铝屑、生锈、焊接高度异常、转接头毛刺、转接头孔内划伤、转接头孔内凹痕、转接头孔内毛刺、牙纹碰伤、补焊宽度、高度、长度异常、腔体内部焊瘤高度异常等。

由于铝铸件表面存在反光特性、尺寸形状多样,生产节拍快,对光学成像方案有很高的要求,东声智能自研适配的成像方案,实现超高的检测准确率和检测速度。

  • 零部件冲压 AOI检测                                                 

零部件常见的缺陷有划伤、压伤、变形、污染物、缺料或多料、毛刺、圆孔冲切不到位或未冲切、圆孔处不可有毛刺、圆孔处不可有压伤、圆孔处不可有堵孔、圆孔处不可有漏冲、圆孔处不可冲切不到位等20多种缺陷。

选择机器视觉检测的方式主要优势我们可以对比传统的人工目视检测,人在工作的过程中容易受主观想法,身体会出现疲劳状态,继而影响到我们生产检测环节,但是对于机器视觉来说,这些问题都不会成为问题,而且很多人眼无法进行完成的动作,如某些细微的瑕疵,甚至是微米级的,人工是完全无法完成,但是对于五金件这种精密产品来说确实经常出现,这时候就显示出工业视觉检测的重要性了!

东声智能作为「AI工业视觉领军者」,立足AI+工业视觉,投入创新研发打破“卡脖子”封锁,为客户提供标准化AI视觉检测算法平台、AI边缘智能硬件、云数据处理平台以及2D\2.5D\3D差异化的自研光学系统等,提供缺陷分割、缺陷分类、目标定位、缺陷检测、尺寸测量,OCR等,应用范围涉及泛3C、汽车、半导体、新能         源汽车等领域。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值