文章提出的DAGA是一种适配于NER的数据增强方法,来自阿里达摩院
1. 核心思想
DAGA的思想简单来讲就是标签线性化:即将原始的**「序列标注标签」与「句子token」进行混合,也就是变成「Tag-Word」**的形式,如下图:将「B-PER」放置在「Jose」之前,将「E-PER」放置在「Valentin」之前;对于标签「O」则不与句子混合。标签线性化后就可以生成一个句子了,文章基于此句子就可以进行「语言模型生成」了。
假设我们在相应的词之前(在句子线性化期间)插入标签来训练 RNNLM,在给定“I have booked a flight to”预测下一个 token 时,“S-LOC”的概率远高于其他选择,因为 RNNLM 在训练数据中见过很多类似的例子,比如“a train to S-LOC”、“trip to S-LOC”等。然后论文根据“I have booked a flight to S-LOC ”预测之后的词。在训练数据中,所有的“S-LOC”后面都是位置词,所以“London”、“Paris”、“Tokyo”等都是可能的选择,它们的概率非常接近。 由于增加了随机性,模型可以选择其中的任何一个。
2. 网络模型结构
DAGA 网络(如上图)仅仅通过一层LSTM进行自回归的语言模型训练,网络很轻,没有基于BERT做。