前缀和与差分(个人笔记)

前言

一个算法思想, 或者说一个算法工具真的是太重要了! 虽说自己的算法学习进度慢了一些, 但是个人觉得系统地学习一遍算法是非常重要的. 之前刚开学接触了"前缀和"的知识点, 就发现这个东西太牛了, 把O(n4)变成O(n3), 把O(n3)变成O(n2), 于是每次遇到矩阵相关的题都会考虑这个东西. 前几天的小米ICPC网络赛第一场的J题, 也是考虑用前缀和做, 但是显然这道题不是我的知识范围之内. 和队友考虑了两个小时也没做出最后的结果, 最终还是放弃了. 最近在AcWing上逐步学习算法, 学习到了前缀和的孪生兄弟"差分", 抱着试一试的想法回去补了一下那道J题. 虽然有一些小坎坷, 但是真的就过了! 这种学会了一个算法, 然后用这个思想去解决一道实际遇到的问题的感觉真的是太棒了, 特此记录一下, 也是对前缀和与差分的一个小笔记。


引例一. To the Max

分析

详细的题解分析之前已经写过, 算是认识前缀和的第一道题目, 借由此题, 可以帮助开拓二维前缀和使用的思考方式. 比如本题中O(n3)做法中每次只储存一列的前缀和, 就是比较独特的思想.
基本的前缀和公式还是挺好理解的, 即:

  1. 求前缀和数组:
    b[i][j] = b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1] + a[i][j];
  2. 通过前缀和数组求该位置的值:
    ans = b[x2][y2] - b[x1 - 1][y2] - b[x2][y1 - 1] + b[x1 - 1][y1 - 1];

另外, 其实这些公式不用刻意去记, 简单模拟一下就明白其中的含义了



引例二. Matrix Subtraction

大致题意

给定一个nm的矩阵, 并给出一个ab的大小, ab大小的子矩阵(相当于一个扫描框)可以放在nm的大矩阵中的任意地方, 并将其中所有元素减一. 问是否可以把大矩阵变成0矩阵

分析

比赛中考虑用前缀和进行实现, 而实际操作的时候遇到很多困难和奇奇怪怪的bug, (其实是因为当时没学差分…) , 学习了差分后发现可以将原矩阵的差分矩阵求出来, 这样每次要执行增减的大小已知, 可以将O(n2)的修改矩阵的值的操作转化为O(1)的直接在差分矩阵上的操作(即只对差分矩阵中四个值进行了修改), 这样这个题目就可以用O(n2)的时间做完.

代码实现

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

int t;
int n, m, a, b;
const int N = 1010;
int A[N][N];
int B[N][N];

void insert(int x1, int y1, int x2, int y2, int c)
{
	B[x1][y1] += c;
	B[x2 + 1][y1] -= c;
	B[x1][y2 + 1] -= c;
	B[x2 + 1][y2 + 1] += c;
}

void printm(int x1, int y1, int x2, int y2)
{
	for (int i = x1; i <= x2; i ++)
	{
		for (int j = y1; j <= y2; j ++)
		{
			printf("%d ", B[i][j]);
		}
		puts("");
	}
}

int main(void)
{
	scanf("%d", &t);
	while (t--)
	{
		memset(B,0,sizeof(B));
		scanf("%d %d %d %d", &n, &m, &a, &b);
		for (int i = 1; i <= n; i ++)
			for (int j = 1; j <= m; j ++)
				scanf("%d", &A[i][j]);
		
		for (int i = 1; i <= n; i ++)
			for (int j = 1; j <= m; j ++)
				insert(i,j,i,j,A[i][j]);
		
		
		int flag = 1;
		for (int i = 1; i <= n - a + 1 && flag; i ++)
		{
			for (int j = 1; j <= m - b + 1 && flag; j ++)
			{
				if (B[i][j] > 0)
				{
					insert(i, j, i + a - 1, j + b - 1, -B[i][j]);
				}
				else if(B[i][j] < 0)
				{
					flag = 0;
				}
			}
		}
		
		for (int i = 1; i <= n && flag; i ++)
		{
			for (int j = 1; j <= m && flag; j ++)
			{
				if (B[i][j] != 0)
				{
					flag = 0;
					break;
				}
			}
		}
		
		if (flag)	cout << "^_^" << endl;
		else	cout << "QAQ" << endl;
	}
	return 0;
}

收获与反思

  1. 最最重要的当然就是加深对"差分"这个工具的理解了, 二维差分最容易理解的方式就是看作前缀和的逆运算, 即原矩阵是差分矩阵的前缀和. 反正差分矩阵的构造不用操心, 就是一个简单的四步操作, 重要的显然是如何应用这个工具解题. 目前的感觉就是:
    ①. 给定一个矩阵, 对其中某一子矩阵进行查询操作, 就要使用前缀和
    ②. 给定一个矩阵, 对其中某一子矩阵进行增删操作, 就要使用差分
    总结起来形式都是如此之相像~
  2. 在补题的时候实际处理中遇到了未知bug, 上网找了相关题解才知道,(其实是才反应过来), 虽然原矩阵中都是正数, 但差分矩阵是会出现负数的. 当执行了一些操作使得我当前所访问的差分矩阵的值为负数时, 证明通过前面的操作, 此处原矩阵的值变成了负数, 很显然这是不符合题意的. 之后使用差分时应该注意这种变换.
  3. 另外就是写代码的一个小技巧, 定义一个flag可以帮助我们很方便地处理一些情况, 但当遇到双重循环的时候, 之前的处理方法是在每一个循环体内加入一条if(!flag) break;这样的语句, 但是显然这起码看起来 是很冗余的. 参考了网上大佬们的写法, 将flag的判断加入for循环的语句中, 看起来就舒服很多了, 实在是妙.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值