项目地址:YunYang1994/tensorflow-yolov3
Anchors clustering
- 关于IOU的解释:Intersection over union
参考文章1:Github 项目 - YOLOV3 的 TensorFlow 复现
参考文章2:【膜拜大神】Tensorflow实现YOLO v3(TF-Slim)
参考文章3:tensorflow学习笔记-YOLOV3-tensorflow示例
参考文章4:重磅:TensorFlow实现YOLOv3(内含福利)
参考文章5:【膜拜大神】Tensorflow+YOLO v3训练自己的数据集合(TF-Slim)-下
运行python main.py -na
:
part 2. Quick start
- 克隆repo
$ git clone https://github.com/YunYang1994/tensorflow-yolov3.git
- 安装依赖包
$ cd tensorflow-yolov3
$ pip install -r ./docs/requirements.txt
- 下载COCO权重并将其转换成 tensorflow checkpoint (
yolov3_coco.ckpt
)
$ cd checkpoint
$ wget https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3_coco.tar.gz
$ tar -xvf yolov3_coco.tar.gz
$ cd ..
$ python convert_weight.py
$ python freeze_graph.py
- 运行 demo 脚本
$ python image_demo.py
$ python video_demo.py # if use camera, set video_path = 0
part 3. Train on your own dataset
-
注意
./core/config.py
中的三个文件,要让它们的内容与自己的图片以及标定数据匹配:
__C.YOLO.CLASSES = “./data/classes/voc.names”
__C.TRAIN.ANNOT_PATH = “./data/dataset/voc_train.txt”
__C.TEST.ANNOT_PATH = “./data/dataset/voc_test.txt” -
使用COCO预训练模型进行训练(作者推荐的):
$ cd checkpoint
$ wget https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3_coco.tar.gz
$ tar -xvf yolov3_coco.tar.gz
$ cd ..
$ python convert_weight.py --train_from_coco
$ python train.py