tensorflow_yolo-v3笔记 IOU:Intersection over union 交并比

项目地址:YunYang1994/tensorflow-yolov3

Anchors clustering

参考文章1:Github 项目 - YOLOV3 的 TensorFlow 复现

参考文章2:【膜拜大神】Tensorflow实现YOLO v3(TF-Slim)

参考文章3:tensorflow学习笔记-YOLOV3-tensorflow示例

参考文章4:重磅:TensorFlow实现YOLOv3(内含福利)

参考文章5:【膜拜大神】Tensorflow+YOLO v3训练自己的数据集合(TF-Slim)-下

参考文章6:用tensorflow实现yolov3

运行python main.py -na
在这里插入图片描述

part 2. Quick start

  1. 克隆repo
$ git clone https://github.com/YunYang1994/tensorflow-yolov3.git
  1. 安装依赖包
$ cd tensorflow-yolov3
$ pip install -r ./docs/requirements.txt
  1. 下载COCO权重并将其转换成 tensorflow checkpoint (yolov3_coco.ckpt
$ cd checkpoint
$ wget https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3_coco.tar.gz
$ tar -xvf yolov3_coco.tar.gz
$ cd ..
$ python convert_weight.py
$ python freeze_graph.py
  1. 运行 demo 脚本
$ python image_demo.py
$ python video_demo.py # if use camera, set video_path = 0

part 3. Train on your own dataset

  1. 注意 ./core/config.py 中的三个文件,要让它们的内容与自己的图片以及标定数据匹配:
    __C.YOLO.CLASSES = “./data/classes/voc.names”
    __C.TRAIN.ANNOT_PATH = “./data/dataset/voc_train.txt”
    __C.TEST.ANNOT_PATH = “./data/dataset/voc_test.txt”

  2. 使用COCO预训练模型进行训练(作者推荐的):
    $ cd checkpoint
    $ wget https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3_coco.tar.gz

$ tar -xvf yolov3_coco.tar.gz
$ cd ..
$ python convert_weight.py --train_from_coco
$ python train.py
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dontla

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值