三角函数公式、诱导公式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三角函数诱导公式是一系列用于简化含有特定角度的三角函数计算的等式。这些公式能够帮助转换不同象限内的角对应的正弦、余弦和正切值,使得解题更加简便。 以下是常用的三角函数诱导公式列表: 1. 角度$\alpha$与其相反数$-\alpha$之间的关系: - $\sin(-\alpha) = -\sin(\alpha)$ - $\cos(-\alpha) = \cos(\alpha)$ - $\tan(-\alpha) = -\tan(\alpha)$ 2. 角度$\alpha$与$\pi + \alpha$之间的关系: - $\sin(\pi + \alpha) = -\sin(\alpha)$ - $\cos(\pi + \alpha) = -\cos(\alpha)$ - $\tan(\pi + \alpha) = \tan(\alpha)$ 3. 角度$\alpha$与$\frac{\pi}{2} - \alpha$(共轭角)之间的关系: - $\sin(\frac{\pi}{2} - \alpha) = \cos(\alpha)$ - $\cos(\frac{\pi}{2} - \alpha) = \sin(\alpha)$ - $\tan(\frac{\pi}{2} - \alpha) = \cot(\alpha)$ 4. 角度$\alpha$与$\frac{\pi}{2} + \alpha$之间的关系: - $\sin(\frac{\pi}{2} + \alpha) = \cos(\alpha)$ - $\cos(\frac{\pi}{2} + \alpha) = -\sin(\alpha)$ - $\tan(\frac{\pi}{2} + \alpha) = -\cot(\alpha)$ 5. 角度$\alpha$与$\pi - \alpha$之间的关系: - $\sin(\pi - \alpha) = \sin(\alpha)$ - $\cos(\pi - \alpha) = -\cos(\alpha)$ - $\tan(\pi - \alpha) = -\tan(\alpha)$ 6. 角度$\alpha$与$2\pi + \alpha$之间的关系(周期性质): - $\sin(2\pi + \alpha) = \sin(\alpha)$ - $\cos(2\pi + \alpha) = \cos(\alpha)$ - $\tan(2\pi + \alpha) = \tan(\alpha)$ 以上公式适用于任何实数值的角度$\alpha$。当涉及到具体的题目时,可以根据需要选择合适的诱导公式来解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dontla

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值