辗转相除法---切蛋糕

Description
     一次生日Party可能有p人或者q人参加,现准备有一个大蛋糕.问最少要将蛋糕切成多少块(每块大小不一定相等),才能使p人或者q人出席的任何一种情况,都能平均将蛋糕分食.

Input 
     每行有两个数p和q.

Output
     输出最少要将蛋糕切成多少块.

Sample Input
2 3
 
Sample Output

4

蛋糕要满足两个人分食要切成两块,满足三个人分食要切成三块。若先分成两块,再尝试着满足三个人,则只需再切两刀即可,因为有一刀是分成两块时已经切开的,无需再切。因此,块数=2+3-gcd(2,3)。gcd为会切重的刀数,即最大公约数。要利用欧几里得——辗转相除法来计算最大公约数 代码如下

#include<iostream>
using namespace std;
int gcd(int a,int b)
{
	if(a%b==0)
		return b;
	else
		return gcd(b,a%b);
}
int main()
{
	int p,q;
	cin>>p>>q;
	if(p<q)
	{
		int t=p;
		p=q;
		q=t;
	}
	cout<<p+q-gcd(p,q)<<endl;
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值