【Jason's_ACM_解题报告】矩形嵌套(NYOJ16)

矩形嵌套

有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。

Input
第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽


Output
每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行


Sample Input
1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2

Sample Output
5


经典问题,引用Liu的话说“矩形之间的‘可嵌套’关系是一个典型的二元关系,二元关系可以用图来建模”,求有向无环图的最长路,状态为d[i],状态转移方程为d[i]=max(d[i],d[j]+1);,此题数据规模不大可用邻接矩阵存储。


附代码如下:

直接输出结果:

#include<cstdio> 
#include<cstring>
#include<algorithm>

using namespace std;

#define MAXN (1000+5)
#define CLR(x,y) (memset(y,x,sizeof(y)))

struct REC{
	int w,h;
};

REC rec[MAXN];
bool e[MAXN][MAXN];
int dist[MAXN];
int n;

int solve(int u){
	int& ans=dist[u];
	if(ans)return ans;
	ans=1;
	for(int v=0;v<n;v++){
		if(e[u][v]) ans=max(ans,solve(v)+1);
	}
	return ans;
}


int main(){
	int total;
	scanf("%d",&total);
	while(total--){
		CLR(false,e);CLR(0,rec);
		scanf("%d",&n);
		for(int i=0;i<n;i++){
			int x,y;
			scanf("%d%d",&x,&y);
			rec[i]=(REC){x,y};
		}
		for(int i=0;i<n;i++){
			for(int j=0;j<n;j++){
				if(i!=j){
					int x1,x2,y1,y2;
					x1=rec[i].w;x2=rec[i].h;
					y1=rec[j].w;y2=rec[j].h;
					if(x1<y1&&x2<y2)e[i][j]=true;
					if(x1<y2&&x2<y1)e[i][j]=true;
				}
			}
		}
		int ans=0;
		for(int i=0;i<n;i++){
			CLR(0,dist);
			ans=max(ans,solve(i));
		}
		printf("%d\n",ans);
	}
	return 0;
}

输出字典序最小的方案:

#include<cstdio> 
#include<cstring>
#include<algorithm>

using namespace std;

#define MAXN (1000+5)
#define CLR(x,y) (memset(y,x,sizeof(y)))

struct REC{
	int w,h;
};

REC rec[MAXN];
bool e[MAXN][MAXN];
int dist[MAXN],l[MAXN];
int n;

int solve(int u){
	int& ans=dist[u];
	if(ans)return ans;
	ans=1;
	for(int v=0;v<n;v++){
		if(e[u][v]) ans=max(ans,solve(v)+1);
	}
	return ans;
}

void write_queue(int u){
	printf("%d ",u);
	for(int v=0;v<n;v++){
		if(e[u][v]&&(l[u]==(l[v]+1))){
			write_queue(v);
			break;
		}
	}
}


int main(){
freopen("in.txt","r",stdin);
	int total;
	scanf("%d",&total);
	while(total--){
		CLR(false,e);CLR(0,rec);
		scanf("%d",&n);
		for(int i=0;i<n;i++){
			int x,y;
			scanf("%d%d",&x,&y);
			rec[i]=(REC){x,y};
		}
		for(int i=0;i<n;i++){
			for(int j=0;j<n;j++){
				if(i!=j){
					int x1,x2,y1,y2;
					x1=rec[i].w;x2=rec[i].h;
					y1=rec[j].w;y2=rec[j].h;
					if(x1<y1&&x2<y2)e[i][j]=true;
					if(x1<y2&&x2<y1)e[i][j]=true;
				}
			}
		}
		int ans=0,st;
		CLR(0,l);
		for(int i=0;i<n;i++){
			CLR(0,dist);
			if(ans<solve(i)){
				ans=solve(i);
				st=i;
				//printf("%d\n",st);
				memcpy(l,dist,sizeof(dist));
			}
		}
		printf("%d\n",ans);
		write_queue(st);printf("\n");
	}
	return 0;
fclose(stdin);
}

输出所有可行方案:
#include<cstdio> 
#include<cstring>
#include<algorithm>

using namespace std;

#define MAXN (1000+5)
#define CLR(x,y) (memset(y,x,sizeof(y)))

struct REC{
	int w,h;
};

REC rec[MAXN];
bool e[MAXN][MAXN];
int dist[MAXN],path[MAXN];
int n;

int solve(int u){
	int& ans=dist[u];
	if(ans)return ans;
	ans=1;
	for(int v=0;v<n;v++){
		if(e[u][v]) ans=max(ans,solve(v)+1);
	}
	return ans;
}

void write_queue(int u,int d){
	path[d]=u;
	if(dist[u]==1){
		for(int i=0;i<=d;i++)printf("%d ",path[i]);printf("\n");
	}
	for(int v=0;v<n;v++){
		if(e[u][v]&&dist[u]==dist[v]+1)
			write_queue(v,d+1);
	}
}

int main(){
freopen("in.txt","r",stdin);
	int total;
	scanf("%d",&total);
	while(total--){
		CLR(false,e);CLR(0,rec);
		scanf("%d",&n);
		for(int i=0;i<n;i++){
			int x,y;
			scanf("%d%d",&x,&y);
			rec[i]=(REC){x,y};
		}
		for(int i=0;i<n;i++){
			for(int j=0;j<n;j++){
				if(i!=j){
					int x1,x2,y1,y2;
					x1=rec[i].w;x2=rec[i].h;
					y1=rec[j].w;y2=rec[j].h;
					if(x1<y1&&x2<y2)e[i][j]=true;
					if(x1<y2&&x2<y1)e[i][j]=true;
				}
			}
		}
		int ans=0; 
		for(int i=0;i<n;i++){
			CLR(0,dist);
			ans=max(ans,solve(i));
		}
		printf("%d\n",ans);
		for(int i=0;i<n;i++){
			CLR(0,dist);
			if(solve(i)==ans){
				write_queue(i,0);
			}
		}
	}
fclose(stdin);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值