Java—交换类排序(冒泡排序,快速排序)
Tags: 排序算法
- 冒泡排序
1.算法思想:反复扫描带排序序列,在扫描过程中,顺次比较两个相邻元素的,如果逆序则调换位置。
2.代码实现:
/* 冒泡排序
* 相邻元素比较,大的后移。每一趟遍历都将得出当前未排序最大的一个;
* 知道某趟遍历没有发现逆序元素,则排序成功,结束循环。
* 或者全部遍历完
*/
public class BubbleSort {
public int[] bubbleSort(int[] array) {
boolean flag = true;//是否还有逆序标记量
for(int i=1; i<array.length && flag; i++) {
flag = false;//遍历前标记为false,若没有逆序存在,便利后值仍未false,会结束循环。
for(int j=0;j<array.length-i;j++) {//每一趟遍历都会排好一个值,所以每次遍历都少一次,直至全部被排序。
if(array[j+1]<array[j]) {//逆序置换位置
int temp = array[j];
array[j] = array[j+1];
array[j+1] = temp;
flag = true;//有逆序存在,标记为ture
}
}
}
return array;
}
}
3:时间空间效率:
时间复杂度:
T(n)=O(n2)
空间复杂度:
S(n)=O(1)
最好情况:顺序排列;
最坏情况:逆序排列;
- 快速排序
1.算法思想:利于一个序列中的值将带排序序列划分成两个子序列,将大于该值的元素放在该值的后边,将小于该值的元素 放在前面,从而形成两个子序列,对子序列分别进行同样的操作,直至所有子序列长度不超过1,此时,已经 排好序。
2.代码实现:
/* 快速排序
* 从待排序序列中选取一个记录为标记值
* 以标记值为准,将其余记录中大于标记的放在标记后面,小于标记的放在标记前面
* 将前面和后面两个子序列重复以上步骤排序
* 直到子序列长度不超过1为止
*/
public class QKSort {
//一趟快速排序
public int QKPass(int[] array,int low,int high) {//low为顺序遍历标记,初始为数组第一位,high为逆序遍历标记,初始为数组最后一位
int temp = array[low];//将数组第一位作为标记量,进行一趟快速排序
while(low<high) {
while(low<high && array[high]>temp) {
high--;//high从后往前遍历寻找小于标记量的值
}
if(low<high) {
array[low] = array[high];//将high找到的值放在low的位置,此时low为空,原值缓存在temp,作为标记量
low++;
}
while(low<high && array[low]<temp) {
low++;//low从前往后遍历寻找大于标记两的值
}
if(low<high) {
array[high] = array[low];//将大于标记两的值放在high标记的位置,此时high为空,原值被放入上一次空出的low中。
high--;
}
}
array[low] = temp;//在一趟快排完成后,low与high标记与相同的位置,将标记量放入,此标记的位置将数组划分成两个子序列
return low;//返回标记位置,为递归的下一次快拍提供位置信息
}
//完整快速排序
public void qkSort(int[] array,int low,int high) {
if(low<high) {//递归,终止条件为,low=high时,及最小序列长为1
int pos = QKPass(array,low,high);//一趟快排返回一个位置信息,前面时小于位置上值的子序列,后面是大于位置上值的子序列
qkSort(array,low,pos-1);//前面的子序列快排
qkSort(array,pos+1,high);//后面的子序列快排
}
}
public void main(String[] args) {
int[] arrayIn = {12,2,32,3,9,15,56,78,34,99,21};
qkSort(arrayIn,0,arrayIn.length-1);
for(int i=0;i<arrayIn.length;i++) {
System.out.print(arrayIn[i] + " ");
}
}
}
3.时间空间效率
最好情况为每趟将序列分为两个大小相等的字表,类似于折半查找,此时时间复杂度为:
T(n)=O(nlog2n)
最坏情况顺序排列。此时时间复杂度为:
T(n)=O(n2)
空间复杂度平均为:
S(n)=O(log2n)