算法设计周记(十五)--最短路径

问题描述


给定一个等边三角形数组,找出自顶向下的最短路径。

解法探究

如果以三角形的顶点为起点,在算出所有路径的长度之前我们并不能确切地知道某一条路径是否为最短的。要遍历路径的话时间复杂度会呈指数级别,不太可取。那换个角度思考,如果最开始就从底层观察的话,不难发现该点元素即为最短路径长度。那往上一层,也不难推算出每一点到底层的最短路径,这样逐层往上,直到顶点,就能得到自顶向下的最短路径了。
class Solution {
public:
    int minimumTotal(vector<vector<int > >& triangle) {
        int side = triangle.size();
        if (side < 2) return triangle[0][0];
		for (int i = side-2; i >= 0; i--) {
			for (int j = 0; j <= i; j++) {
				triangle[i][j] += triangle[i+1][j] < triangle[i+1][j+1] ? triangle[i+1][j] : triangle[i+1][j+1];
			}
		}
        return triangle[0][0];
    }
};
从代码可见这种方案的效率有极大提升,在这类动态规划的问题中,状态方程以及状态方程的转换规则的确定才是核心问题。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,这是两个问题。让我分别回答。 --- 对于习题24.2-4,我们需要证明:对于有向图$G=(V,E)$,从源点$s$到任何其他点$v\in V$的最路径上最多可以包含$|V|-1$条边。 我们可以使用反证法来证明这个结论。假设存在一条从$s$到$v$的最路径包含了$|V|$条边。由于这是一条简单路径,所以它经过了$|V|$个顶点中的所有顶点。因此,这个路径形成了一个简单环。我们可以从这个简单环中删除任意一条边,得到一条从$s$到$v$的路径路径长度比原来的最路径长度更小,这与原来的最路径的假设相矛盾。因此,假设不成立,结论得证。 --- 对于习题24.3-6,我们需要证明:如果负权重有向图$G$中不存在从源点$s$可达的负权重环,则Bellman-Ford算法能够正确地计算出从$s$到所有其他顶点的最路径。 我们可以使用反证法来证明这个结论。假设存在一个从$s$到$v$的最路径上存在一个负权重环。由于负权重环的存在,我们可以通过不断绕这个环走来无限制地减小路径长度,因此不存在从$s$到$v$的最路径。但是,Bellman-Ford算法会在第$|V|$次松弛操作之前终止,并且在第$i$次松弛操作之后,算法会计算出从$s$到所有距离$s$不超过$i$的顶点的最路径。因此,我们可以得出结论:如果负权重有向图$G$中不存在从源点$s$可达的负权重环,则Bellman-Ford算法能够正确地计算出从$s$到所有其他顶点的最路径

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值