阿里云GPU服务器安装驱动(完整版)

第一步、屏蔽系统自带的nouveau
查看命令(没有输出表示屏蔽):
lsmod | grep nouveau
修改dist-blacklist.conf文件:
vim /lib/modprobe.d/dist-blacklist.conf
将nvidiafb注释掉:
#blacklist nvidiafb 
然后添加以下语句:
blacklist nouveau
options nouveau modeset=0
    
第二步、同步内核:
先安装:yum -y install gcc make dkms  ,再重启:reboot,最后安装:yum install "kernel-devel-uname-r == $(uname -r)" -y
[root@localhost ~]# uname -r
3.10.0-1160.11.1.el7.x86_64
[root@localhost ~]# rpm -aq | grep kernel-devel
kernel-devel-3.10.0-1160.11.1.el7.x86_64  

#下载指定版本 kernel: http://rpm.pbone.net/index.php3?stat=3&limit=1&srodzaj=3&dl=40&search=kernel
#下载指定版本 kernel-devel:http://rpm.pbone.net/index.php3?stat=3&limit=1&srodzaj=3&dl=40&search=kernel-devel

服务器的显卡查看:
yum install pciutils
lspci | grep -i vga
0000:b3:00.0 VGA compatible controller: NVIDIA Corporation TU104GL [Quadro RTX 5000] (rev a1)

使用nvidia GPU查看:
lspci | grep -i nvidia

第三步、下载对应版本的nvidia驱动并安装

官方驱动 | NVIDIA


[root@localhost ~]# bash NVIDIA-Linux-x86_64-460.32.03.run --kernel-source-path=/usr/src/kernels/3.10.0-1160.11.1.el7.x86_64/


[root@localhost ~]# nvidia-smi 


 

### 配置阿里云ECS实例以训练大规模深度学习模型 #### 资源配置选择 对于大规模深度学习模型的训练,推荐选用具备高性能计算特性的实例类型。例如,倚天Arm ECS实例提供了专门面向AI场景优化后的推理加速功能[^3];而通用型g8i实例则凭借其内置的强大硬件加速器,在多个关键应用场景中实现了显著性能飞跃,特别是在深度学习训练方面能够达到两倍以上的效率提升[^4]。 #### 安装依赖库与工具链 为了顺利开展后续操作,需先完成基础环境搭建: 1. 更新系统包管理器并安装必要的构建工具; 2. 设置Python虚拟环境来隔离不同项目间的依赖关系冲突; 3. 利用pip或conda等方式获取最新版本的目标框架(如TensorFlow、PyTorch),同时注意确认所选GPU驱动程序兼容性良好。 ```bash sudo apt-y sudo apt install python3-pip virtualenv git build-essential cmake curl wget unzip libsm6 libxext6 zlib1g-dev swig ffmpeg pkg-config yasm nasm -y virtualenv venv --python=python3 source ./venv/bin/activate pip install torch torchvision torchaudio cudatoolkit=11.7 -f https://download.pytorch.org/whl/torch_stable.html ``` #### 构建分布式训练集群 考虑到单机难以满足超大尺寸数据集处理需求的情况,借助Kubernetes平台及其上层组件——Kubeflow所提供的强大调度机制,则能有效简化多节点协同工作的复杂度。通过定义合适的Pod模板文件描述各参与方角色定位,并利用Arena命令行工具提交作业请求至目标命名空间内执行即可快速组建起一套完整的分布式训练体系结构[^2]。 #### 性能调优策略 当一切就绪之后,还需关注以下几个方面的调整措施以便进一步挖掘潜在效能极限: - 合理规划Batch Size大小,既保证内存占用率处于可控范围之内又不失批量梯度下降算法应有的收敛速度优势; - 开启混合精度运算模式(Mixed Precision Training),允许FP16浮点数参与到前向传播过程中去从而减少显存消耗量级的同时加快迭代周期运转速率; - 应用自动微分引擎提供的图优化特性对原始计算表达式做针对性改造,剔除冗余子图片段进而降低整体延迟水平。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虔旅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值