【管理运筹学】背诵手册(七)| 网络计划与排队论

七、网络计划

网络图中的第一个事项称为起始事项,它只表示整个任务的开始;而最后一个事项称为终止事项,它只表示整个任务的结束;介于起始事项和终止事项之间的所有事项都称为中间事项,它既表示前项工作的结束,又表示后项工作的开始。

所有各条线路的长度中,可以找到一条所需工时最长的路,这条最长的线路在网络图中称为关键线路。

每道工作的期望工时可估计为 t ( i , j ) = a + 4 m + b 6 t(i,j)=\frac{a+4m+b}{6} t(i,j)=6a+4m+b 其中, a a a 为最乐观时间, b b b 为最悲观时间, m m m 为最可能完成时间。

事项有三个参数:最早开始、最迟结束、时差。

工作的时间参数有:最早开始、最早结束、最迟开始、最迟结束、总时差和单时差。

总时差给出了可供利用的最多机动时间,为工作最晚结束时间减去最早结束时间。总时差为 0 的工作称为关键工作,连接所有关键工作的线路即为关键线路。

工作的单时差为紧前工作最晚结束,紧后工作最早开始时具有的机动时间。关键工作的单时差一定为 0 ,但单时差为 0 的工作不一定为关键工作。

工作的总时差等于它的箭尾事项和箭头事项的时差之和,加上本身的单时差。


八、排队论

3 个基本部分:输入过程、排队规则、服务机构。

最主要、影响最大的三个因素:1. 顾客相继到达的间隔时间的分布;2. 服务时间的分布;3. 服务台个数。

Kendall 记号: X / Y / Z / A / B / C X/Y/Z/A/B/C X/Y/Z/A/B/C ,前三个分别为最主要三个因素,后三个分别是系统容量限制 N N N ,顾客源数目 m m m 以及服务规则。

M / M / 1 / ∞ / ∞ M/M/1/\infty/\infty M/M/1/∞/∞ 的状态概率的方程: { λ P 0 = μ P 1 , λ P n − 1 + μ P n + 1 = ( λ + μ ) P n , n ≥ 1. \begin{cases} \lambda P_0=\mu P_1, \\ \lambda P_{n-1}+\mu P_{n+1}=(\lambda+\mu)P_n,n\geq1. \end{cases} {λP0=μP1,λPn1+μPn+1=(λ+μ)Pn,n1. 要求服务强度 ρ < 1 \rho<1 ρ<1 ,可推得: P 0 = 1 − ρ , P n = ρ n P 0 P_0=1-\rho,P_n=\rho^nP_0 P0=1ρ,Pn=ρnP0 。各指标公式为: L s = λ μ − λ , L q = L s − λ μ ; W s = L s λ , W q = W s − 1 μ . L_s=\frac{\lambda}{\mu-\lambda},L_q=L_s-\frac{\lambda}{\mu};W_s=\frac{L_s}{\lambda},W_q=W_s-\frac{1}{\mu}. Ls=μλλ,Lq=Lsμλ;Ws=λLs,Wq=Wsμ1.

M / M / 1 M/M/1 M/M/1 情况下,顾客在系统中逗留的时间服从参数为 μ − λ \mu-\lambda μλ 的指数分布,因此期望为 1 / ( μ − λ ) 1/(\mu-\lambda) 1/(μλ)

Little 公式有四个,为 L s = λ W s , L q = λ W q ; W s = W q + 1 μ , L s = L q + λ μ . L_s=\lambda W_s,L_q=\lambda W_q;W_s=W_q+\frac{1}{\mu},L_s=L_q+\frac{\lambda}{\mu}. Ls=λWs,Lq=λWq;Ws=Wq+μ1,Ls=Lq+μλ. 对于有容量限制的 M / M / 1 / N / ∞ M/M/1/N/\infty M/M/1/N/∞ ,其状态概率的稳态方程,比 M / M / 1 / ∞ / ∞ M/M/1/\infty/\infty M/M/1/∞/∞ 多一个在系统中有 N N N 个顾客时的方程。此时系统只会中不会再有顾客进入,于是在 n = N n=N n=N 处只有: λ P N − 1 = μ P N \lambda P_{N-1}=\mu P_N λPN1=μPN ,即 { λ P 0 = μ P 1 , λ P n − 1 + μ P n + 1 = ( λ + μ ) P n , n ≤ N − 1 , λ P N − 1 = μ P N . \begin{cases} \lambda P_0=\mu P_1, \\ \lambda P_{n-1}+\mu P_{n+1}=(\lambda+\mu)P_n,n\leq N-1,\\ \lambda P_{N-1}=\mu P_N. \end{cases} λP0=μP1,λPn1+μPn+1=(λ+μ)Pn,nN1,λPN1=μPN. 此时有 P 0 + P 1 + ⋯ + P N = 1 P_0+P_1+\cdots+P_N=1 P0+P1++PN=1 ,可以解得 P 0 = 1 − ρ 1 − ρ N + 1 P_0=\frac{1-\rho}{1-\rho^{N+1}} P0=1ρN+11ρ 各个状态之间仍然是满足 P n = ρ n P 0 P_n=\rho^nP_0 Pn=ρnP0 。队长指标为 L s = ρ 1 − ρ − ( N + 1 ) ρ N + 1 1 − ρ N + 1 , L q = L s − ( 1 − P 0 ) L_s=\frac{\rho}{1-\rho}-\frac{(N+1)\rho^{N+1}}{1-\rho^{N+1}},L_q=L_s-(1-P_0) Ls=1ρρ1ρN+1(N+1)ρN+1,Lq=Ls(1P0) 当考虑等待时间,到达率应变为有效到达率 λ e \lambda_e λe ,其值为 ( 1 − P N ) λ (1-P_N)\lambda (1PN)λ ,可推出其另一个表达式为 λ e = μ ( 1 − P 0 ) \lambda_e=\mu(1-P_0) λe=μ(1P0) 。Little 公式仍然适用,即 W s = L s / λ e , W q = W s − 1 / μ W_s=L_s/\lambda_e,W_q=W_s-1/\mu Ws=Ls/λe,Wq=Ws1/μ

对于顾客源为有限 ( M / M / 1 / ∞ / m ) (M/M/1/\infty/m) (M/M/1/∞/m)的情形,最常见的是机器因故障待修的问题。特别的是它每个顾客经过服务后仍回到原来总体,所以它每个状态的到达转移都不相同。状态 0 到状态 1 的转移率为 m λ m\lambda ,状态 1 到状态 2 的转移率为 ( m − 1 ) λ (m-1)\lambda (m1)λ ,状态 m − 1 m-1 m1 到状态 m m m 的转移率为 λ \lambda λ 。而且,由于顾客总体为 m m m ,实际上容量最大也不会超过 m m m ,因此这和 ( M / M / 1 / m / m ) (M/M/1/m/m) (M/M/1/m/m) 的意义相同。

对于标准的多服务台 ( M / M / c / ∞ / ∞ ) (M/M/c/\infty/\infty) (M/M/c/∞/∞) ,整个系统的平均服务率(平均利用率)为 λ / ( c μ ) \lambda/(c\mu) λ/(cμ) ,需保证其小于 1 。由于其有多个服务台,因此每个状态的离去转移也不同,状态 1 到状态 0 的转移率为 μ \mu μ ,状态 2 到状态 1 的转移率为 2 μ 2\mu 2μ,状态 n ( n < c ) n(n<c) n(n<c) 到状态 n − 1 n-1 n1 的转移率为 n μ n\mu nμ 。当 n ≥ c n\geq c nc 时,后面的状态转移率一直为 c μ c\mu cμ

对于一般服务时间 M / G / 1 M/G/1 M/G/1 模型,是指顾客到达间隔服从负指数分布,但服务时间服从任意分布的情形。下面的关系都是成立的: E ( 系统中顾客数 ) = E ( 队列中顾客数 ) + E ( 服务机构顾客数 ) E ( 系统中逗留时间 ) = E ( 排队时间 ) + E ( 服务时间 ) E(系统中顾客数)=E(队列中顾客数)+E(服务机构顾客数)\\ E(系统中逗留时间)=E(排队时间)+E(服务时间) E(系统中顾客数)=E(队列中顾客数)+E(服务机构顾客数)E(系统中逗留时间)=E(排队时间)+E(服务时间) 当服务时间服从负指数分布时, E ( 服务时间 ) = 1 / μ , E ( 服务机构顾客数 ) = λ E ( T ) = ρ E(服务时间)=1/\mu,E(服务机构顾客数)=\lambda E(T)=\rho E(服务时间)=1/μ,E(服务机构顾客数)=λE(T)=ρ

P-K 公式( ρ = λ E ( T ) \rho=\lambda E(T) ρ=λE(T)): L s = ρ + ρ 2 + λ 2 D ( T ) 2 ( 1 − ρ ) L_s=\rho+\frac{\rho^2+\lambda^2D(T)}{2(1-\rho)} Ls=ρ+2(1ρ)ρ2+λ2D(T) 只要知道 λ , E ( T ) , D ( T ) \lambda,E(T),D(T) λ,E(T),D(T) ,不管什么分布,就可以求出 L s L_s Ls ,进而求出 L q = L s − λ E ( T ) , W s = L s / λ , W q = L q / λ L_q=L_s-\lambda E(T),W_s=L_s/\lambda,W_q=L_q/\lambda Lq=LsλE(T),Ws=Ls/λ,Wq=Lq/λ

在探索智慧旅游的新纪元中,一个集科技、创新服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Douglassssssss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值