- 博客(146)
- 收藏
- 关注

原创 用matlab实现交通分布预测方法——增长系数法
用matlab实现了交通分布预测方法——增长系数法,含平均增长系数法、底特律法、福莱特法的代码。
2024-02-22 11:28:37
2571
1

原创 Matlab实现交通分布预测方法 —— 增长系数法 | 平均增长率法、底特律法、福莱特法
介绍了交通分布预测的增长系数法,并利用Matlab实现了自动迭代计算
2023-05-02 11:28:39
6895
25
原创 【深度学习】使用块的网络(VGG)
虽然 AlexNet 证明深层神经网络卓有成效,但它没有提供一个通用的模板来指导后续的研究人员设计新的网络。也就是说尽管我知道了更深更大的网络更有效,但是不清楚怎么让它更深更大,从而起到一个更好的效果。于是,研究人员开始从单个神经元的角度思考问题,发展到整个层,现在又转向块,重复层的模式。使用块的想法首先出现在牛津大学的视觉几何组的 VGG 网络中,通过使用循环和子程序,可以很容易地在任何现代深度学习框架的代码中实现这些重复的架构。
2025-05-18 19:40:20
902
原创 【深度学习】残差网络(ResNet)
ResNet(残差网络)是深度学习中的重要架构,尤其适用于设计深层神经网络。其核心思想是通过引入残差块,确保新添加的层不会降低网络性能,而是逐步逼近全局最优。残差块通过快速通道实现 $f(x)=x+g(x)$ 的结构,即使 $g(x)$ 无效,网络也不会退步。ResNet 沿用了 VGG 的 3×3 卷积层设计,并通过 1×1 卷积层调整通道数。ResNet-18 模型由 4 个模块组成,每个模块包含 2 个残差块,共 18 层。训练时,ResNet 在 Fashion-MNIST 数据集上表现优异,展示了
2025-05-18 19:30:31
1047
原创 【深度学习】批量规范化
训练深层神经网络是十分困难的,光是之前简单的模型在简单的数据集上训练都不太轻松。而批量规范化(batch normalization)是一种流行且有效的技术,可以帮助加快深层网络的收敛速度。
2024-09-24 20:03:01
853
原创 【深度学习】深度卷积神经网络(AlexNet)
在 LeNet 提出后,卷积神经网络在计算机视觉和机器学习领域中很有名气,但并未起到主导作用。这是因为 LeNet 在更大、更真实的数据集上训练的性能和可行性还有待研究。事实上,在 20 世纪 90 年代到 2012 年之间的大部分时间里,神经网络往往被其他机器学习方法超越,如支持向量机。在计算机视觉中,直接将神经网络与其他机器学习方法比较也许不太公平,因为卷积神经网络的输入是由原始像素值或是经过简单预处理的像素值组成。而在使用传统机器学习方法时,从业者永远不会将原始像素作为输入。
2024-09-24 19:57:34
1070
原创 【深度学习】卷积神经网络与 LeNet
根据图6.6.1中的各层图示,可以很轻松地通过实例化Sequential得到。net = nn.Sequential( # LeNet模型。
2024-09-06 16:45:17
1163
原创 【深度学习】多层感知机的从零开始实现与简洁实现
这里我们选择 ReLU,用于处理隐层的输出,再出入输出层。def relu(X): # 激活函数有了激活函数后,模型的定义可直接使用矩阵乘法实现。def net(X): # 模型X = X.reshape((-1, num_inputs)) # 展平H = relu(X@W1 + b1) # 这里“@”代表矩阵乘法这里我们通用采用交叉熵损失。值得一提的是,直接调用的 nn 模块里的交叉熵损失函数,它里面就包含了 softmax 操作。
2024-09-06 16:38:41
1142
原创 【深度学习】softmax 回归的从零开始实现与简洁实现
因为模型中需要通过 softmax 运算将输出的结果转为概率,因此在定义模型前需要先定义 softmax 操作。对每项求 exp 幂;对每一行求和(每一行代表一个样本),得到每个样本的规范化常数;每一行除以其规范化常数,确保结果之和为 1。def softmax(X): # 定义 softmax 操作partition = X_exp.sum(1, keepdim=True) # keepdim 指保持维度不变return X_exp / partition # 这里应用了广播机制。
2024-09-05 17:05:43
1981
原创 【深度学习】线性回归的从零开始实现与简洁实现
想想之前学过的拟合,可以用线性拟合,也可以用二次曲线拟合,都是为了将输入与输出关联起来。可以把模型理解为一个函数,把输入放进去,可以得到一个输出。我们通过对原始数据的可视化分析,选取线性模型。# 定义模型# 线性模型在从零实现中,我们明确定义了线性模型的参数,并编写了内部进行计算的代码。如果模型的计算变得复杂,并且每天需要经常使用时,我们就会考虑对这一过程进行简化。我们可以使用 pytorch 预先定义好的“层”,这样我们就只需要关注使用哪些层来构建我们的模型,而不用去关注怎么实现这个层。
2024-09-05 17:04:29
912
原创 【交通规划原理】第八章——交通流分配
介绍了交通分配理论的产生与发展、交通分配的基本概念、非平衡分配法、平衡分配法、随机分配方法以及动态分配。
2024-03-18 09:26:47
12744
2
原创 【道路交通管理与控制】第三章——路口与路段交通管理
对路口与路段的交通管理做了介绍,包括路口管理的原则和方式、交通渠化的定义与作用、提高路口通行能力的对策和交通标志标线等。
2024-03-17 11:07:48
3351
原创 【道路交通管理与控制】第四章——道路交通控制基础理论
对交通流理论作了概要,包括三参数的关系、统计分布、跟驰理论和流体力学理论等。对通行能力和服务水平进行了介绍。还介绍了交通信息采集和处理技术。
2024-03-10 15:06:00
3147
原创 【道路交通管理与控制】第二章——道路交通管理概论
道路交通管理概论,包括交通管理基本法规、行车管理、停车管理、步行管理、高速公路交通管理以及交通需求管理
2024-02-22 11:28:17
1536
原创 【交通规划原理】第三章 —— 交通与土地利用
交通与土地利用互为因果关系,交通设施的建设拉动沿线的土地利用,支撑经济社会发展。相反,土地利用变化带来人们出行活动和物资流动的变化,从而诱发交通的生成,促进交通设施的建设。
2024-01-24 22:16:27
2579
原创 【考研数学】正交变换后如果不是标准型怎么办?| 关于二次型标准化的一些思考
梳理了二次型标准化的前后逻辑,并联系了前面相似对角化的内容,解决了正交变换后如果不是标准型的问题。
2023-11-20 18:14:17
3327
3
原创 【管理运筹学】背诵手册(三)| 运输问题
三、运输问题产销平衡的运输问题(mmm 个产地,nnn 个销地)的数学模型为:minz=∑i=1m∑j=1ncijxijs.t.{∑i=1mxij=bj,j=1,2⋯ ,n∑j=1nxij=ai,i=1,2⋯ ,mxij≥0\min z =\sum_{i=1}^m\sum_{j=1}^nc_{ij}x_{ij} \\ s.t.\begin{cases} \sum_{i=1}^mx_{ij}=b_j,j=1,2\cdots,n\\ \sum_{j=1}^nx_{ij}=a_i,i=1,2\cdots,m
2023-11-15 20:52:19
1219
BEV感知后续检测问题
2024-12-26
TA创建的收藏夹 TA关注的收藏夹
TA关注的人