数学问题——割圆法求π的近似值

使用概率法得到的圆周率,其值具有不确定性。而古人计算圆周率,一般是用割圆法,即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后三位的精度,刘徽用正3072边形得到5位精度。

编写割圆法求π得近似值,示例代码如下:

package com.maths;
/**
 * 割圆法求解圆周率的近似值
 */
import java.util.Scanner;

public class PI2 {
	public static void main(String[] args) {
		int i,n,s;
		double k,y2;
		System.out.println("请输入割圆的次数:");
		Scanner scanner = new Scanner(System.in);
		if(scanner.hasNext()) {
			n = scanner.nextInt();
			i = 0;
			k = 3.0;
			y2 = 1.0;
			s = 6;
			while(i<n) {
				System.out.println("第"+i+"次割圆,为"+s+"边形"+"PI = "+k*Math.sqrt(y2));
				s*=2;
				y2=2-Math.sqrt(4-y2);
				i++;
				k*=2.0;
			}
		}
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值