HDU 3853

f[i][j]表示从(i,j)走到(n,m)的期望步数。
对于数据,保证除了(n,m)的原地踏步概率为1,别的地方原地踏步的概率均不为1。
与HDU4336类似。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
using namespace std;
const int N=1e3+5;
const double inf=-2e9;
int n,m;
double p1[N][N],p2[N][N],p3[N][N],f[N][N];
//f[i][j]:从(i,j)到(n,m)的期望步数 
double dfs(int i,int j)
{
	if (i>n || j>m) return 0;
	if (f[i][j]!=inf) return f[i][j];
	if (i==n && j==m) return 0;
	if (p1[i][j]==1) return 0;
	double ans=0;
	double del=p1[i][j];
	ans=p2[i][j]*dfs(i,j+1)+p3[i][j]*dfs(i+1,j);
	//要除以(1-原地踏步的概率),也就是说原地踏步导致期望要变大一些 
	ans+=2;
	ans/=(1-del);
	f[i][j]=ans;
	return f[i][j];
}

int main(){
	while (~scanf("%d%d",&n,&m))
	{
		for (register int i=1; i<=n; ++i)
		for (register int j=1; j<=m; ++j) scanf("%lf%lf%lf",&p1[i][j],&p2[i][j],&p3[i][j]);
		for (register int i=0; i<=n+1; ++i)
		for (register int j=0; j<=m+1; ++j) f[i][j]=inf;
		printf("%.3f\n",dfs(1,1)); 
	}
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值