1. 图的定义

一种多对多的数据关系,线性表和树是图的一种特殊的情况
在这里插入图片描述
图的分类:无向图、有向图

2.建立图

两种方案:

  • 邻接矩阵法,使用一个二维数组表示一个图,对于一个无向图怎么节省空间。使用一个一位数组(只存储下三角的信息),利用其数字关系查找,
    优点:直观、简单、好理解;
    方便检查顶点之间是否存在边
    方便找邻接点
    方便计算度
    缺点:对于稀疏图会浪费空间
typedef struct GNode *PtrToGNode;
struct GNode{
    int Nv;  /* 顶点数 */
    int Ne;  /* 边数   */
    WeightType G[MaxVertexNum][MaxVertexNum]; /* 邻接矩阵 */
};
typedef PtrToGNode MGraph; /* 以邻接矩阵存储的图类型 */
  • 邻接表。对于每一个顶点,使用链表存储与其存在边的顶点。
    对每一个节点开一个指针,数组的元素是一个头指针,对于每个节点
/* 邻接点的定义 */
typedef struct AdjVNode *PtrToAdjVNode; 
struct AdjVNode{
    Vertex AdjV;        /* 邻接点下标 */
    PtrToAdjVNode Next; /* 指向下一个邻接点的指针 */
};

/* 顶点表头结点的定义 */
typedef struct Vnode{
    PtrToAdjVNode FirstEdge; /* 边表头指针 */
} AdjList[MaxVertexNum];     /* AdjList是邻接表类型 */

/* 图结点的定义 */
typedef struct GNode *PtrToGNode;
struct GNode{  
    int Nv;     /* 顶点数 */
    int Ne;     /* 边数   */
    AdjList G;  /* 邻接表 */
};
typedef PtrToGNode LGraph; /* 以邻接表方式存储的图类型 */

图的初始化
初始化一个有顶点但是没有边的图。

typedef int Vertex;//为了和整形区分开来,方便阅读代码,可以清楚的知道哪些数据是顶点。
MGraph CreatGraph(int VertexNum)
{
    Vertex V, W;
    MGraph Graph;
    
    Graph = (MGraph)malloc(sizeof(struct GNode));
    Graph->Nv = VertexNum;
    Graph->Ne = 0;
    for(V=0; V<Graph->Nv; V++)
        for(W=0; W<Graph->Nv;W++)
            Graph->G[V][W] = 0;//0表示不联通,或者是无穷大的数字
}

向图中插入边:

typedef struct ENode *PtrToENode;
struct ENode{
    Vertex V1, V2;//有向边<V1, V2>;
    WeightType Weight;
};
typedef PtrToENode Edge;

void InsertEdge(MGraph Graph, Edge E)
{
    Graph->G[E->V1][E->V2] = E->Weight;
    //如果是无向图还要插入对称位置的信息
}

在这里插入图片描述

优点:对于稀疏图节省空间
方便找任意顶点的邻接点
方便计算出度
不方便计算入度(用逆邻接表)
缺点: 查找两顶点间是否有边比较码麻烦

3. 图的遍历(DFS,BFS)

广度优先遍历

先将一个顶点的所有邻接点全部遍历;
再对其邻接点继续进行广度优先便利;
邻接表:时间复杂度 O(N+E)
邻接矩阵:时间复杂度O(N^2)

{
    int queue[1010];
    int l=0,r=0;//l是队头,r是队尾
    queue[r++]=S;//插入到队尾
    Visit (S);
    Visited[S]=true;
    PtrToAdjVNode tmp;//边表结点指向下一个临界点的指针,其实就是next
    while(l!=r)//就是队不空
    {
        tmp=Graph->G[queue[l++]].FirstEdge;//找到当前顶点边表链表头指针,queue[l++]就是每次循环队头都要出队
        while(tmp)
        {
            Vertex pos=tmp->AdjV;//pos为邻接点下标
            if(!Visited[pos])//没访问就访问它
            {
                Visit(pos);
                Visited[pos]=true;
                queue[r++]=pos;//插入到队尾
            }
            tmp=tmp->Next;//指针指向下一个邻接点
        }
    }
}

深度优先遍历

从一个邻接点一直向邻接点的下一个邻接点进行深度优先遍历。

连通分量

  • 无向图的极大连通子图
  • 极大的顶点数,再增加一个顶点就不联通了
  • 极大边数: 包含子图中所有顶点相连的所有边。
    强连通:有向图中两个顶点之间存在双向路径(不一定是同一条路径,但是都能相互到达)这就是强联通
    强联通图 任意两点都是强连通的,
    弱连通图 将方向去掉后图可以变为强连通的,就是弱连通图。

六度空间
给定社交网络图,对每个节点计算符合六度空间理论的节点占节点总数的百分比,

  1. 对每个节点进行广度优先搜索。
  2. 累计访问的节点树
  3. 需要记录层数,只计算六层以内的节点数(关键点)
    1、给每一个节点都增加一个layer记录其层数。
    2、level记录当前节点的层数,last当前这一层访问的最后一个节点;在进行循环时,将当前节点的邻接点一个一个压入队列中,当最后一个元素进队时候,然后更新时将last更新成7,也就是相当于访问到这一个元素时候就要进入下一层了,然后这个时候7的所有元素都进入队列以后,last也就可以进行更新了,增加一个tail变量它指向下一层进队列的最后一个节点,

图的最短路

在网络中求两个不同顶点之间所有路径中m

1. 单源最短路径问题

无权图
按照递增的顺序找出到各个顶点的最短路,

  1. 从源点出发,将距离为1 的顶点收录进来
  2. 这一步可以直接在上一步的基础上向外走一步,将顶点收录进来,
  3. 直到所有节点都已经被访问过了,

定义一个dist[w]记录从源点到w的最短路经大小,通过这个值来判断是否已经被访问过。(所以在初始化时候,要将这个值定义为很明显的数字,可以是负数、无穷大)
另一个数组path[]记录路径
path[i]的数据是i的上一个顶点(也就是访问i 必须经过的顶点)

void Unweighted(Vertex S)
{
    Enqueue(S,Q);
    while(!IsEmpty(Q))
    {
        V = DeQueue(Q);
        for(V的每个邻接点W)
        {
            if(dist[W]!=-1)
            {
                dist[W] = dist[V]+1;
                path[W] = V;
                Enqueue(W,Q);
            }
        }
    }
}

将源点压入队列,然后访问邻接点,如果邻接点没有被访问,就将
有权图
有权图的最短路,不一定是经过顶点数最少的路径;
Dijkstra算法

  • 令S= {源点S+已经确定了最短路径的顶点V)
  • 对没有收录的顶点v,定义dist[v]为s到v的最短路径长度,但该路径只经过s中的顶点(就是只经过已经收录进来的最短的顶点。
    第一步:对于顶点v,初始化dist和path;
    第二部:进入dijkstra算法:判断此时是否顶点已经全部收录;如果是则退出函数
    第三步:从未收录的顶点中选择dist最小的;
    第四步:对当前顶点的每个邻接点W进行访问:如果其被收录,就访问下一个邻接点,如果没有就进行下一个判断
    第五步:判断dist[v]+v->w的距离是否小于dist[w]的距离,如果小于,就更新dist[w];并且更新path[w]=v;(意思就是经过v到w的距离更短,所以就要更新最短路)
    第六步:继续下一个循环
void Dijkstra(Vertex S)
{
	while(1)
	{
		V = 未收录顶点中dist最小的
		if(这样的V不存在)
			break;
		collect[V] = true;
		for(V的每一个邻接点W)
			if(collect[w]== false)
				if(dist[v]+E<v,w> < dist[w])
				  dist[w] = dist[v]+E<v,w>;
				  path[w] = v;
				
	}
}

2. 多源最短路

Floyd算法
方法一:对每一个节点都调用一次单源最短路算法:时间复杂度O(V^3 +E×V)
方法二:Floyd算法:

在这里插入图片描述

void Floyd()
{
	for(i=0;i<N;i++)
		for(j=0;j<N;j++)
		{
		  D[i][j] = G[i][j];
		  path[i][j] = -1;
		}
	for(k=0;k<N;k++)
		for(i=0;i<N;i++)
			for(j=0;j<N;j++)
			{
				if(D[i][k]+D[k][j]<D[i][j])
				{
					D[i][j] = D[i][k]+D[k][j];
					path[i][j] = k;
				}
			}
}

图的生成树

最小生成树

  • 是一棵树,:没有回路,顶点个数比边的个数多1
  • 生成树:包含全部顶点,v-1条边都在图里
  • 边的权重和最小
    贪心算法:
    每一步只要眼前最小的;
    什么是好 :权重最小边
    需要约束;只能用图中有的边;正好用掉v-1条边;不能有回路
    Prim算法 对稠密图比较合适
    让一颗小树长大。
    1、先选择一个点
    2、在和树相关的边中选择一个最小的边,且其不会行成回路。
    3、这时将相连的顶点收进;继续生长,
    很多实际问题在用图来描述时候,需要给图的边加上权值,
/* 邻接矩阵存储 - Prim最小生成树算法 */

Vertex FindMinDist( MGraph Graph, WeightType dist[] )
{ /* 返回未被收录顶点中dist最小者 */
    Vertex MinV, V;
    WeightType MinDist = INFINITY;

    for (V=0; V<Graph->Nv; V++) {
        if ( dist[V]!=0 && dist[V]<MinDist) {
            /* 若V未被收录,且dist[V]更小 */
            MinDist = dist[V]; /* 更新最小距离 */
            MinV = V; /* 更新对应顶点 */
        }
    }
    if (MinDist < INFINITY) /* 若找到最小dist */
        return MinV; /* 返回对应的顶点下标 */
    else return ERROR;  /* 若这样的顶点不存在,返回-1作为标记 */
}

int Prim( MGraph Graph, LGraph MST )
{ /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */
    WeightType dist[MaxVertexNum], TotalWeight;
    Vertex parent[MaxVertexNum], V, W;
    int VCount;
    Edge E;
    
    /* 初始化。默认初始点下标是0 */
       for (V=0; V<Graph->Nv; V++) {
        /* 这里假设若V到W没有直接的边,则Graph->G[V][W]定义为INFINITY */
           dist[V] = Graph->G[0][V];
           parent[V] = 0; /* 暂且定义所有顶点的父结点都是初始点0 */ 
    }
    TotalWeight = 0; /* 初始化权重和     */
    VCount = 0;      /* 初始化收录的顶点数 */
    /* 创建包含所有顶点但没有边的图。注意用邻接表版本 */
    MST = CreateGraph(Graph->Nv);
    E = (Edge)malloc( sizeof(struct ENode) ); /* 建立空的边结点 */
           
    /* 将初始点0收录进MST */
    dist[0] = 0;
    VCount ++;
    parent[0] = -1; /* 当前树根是0 */

    while (1) {
        V = FindMinDist( Graph, dist );
        /* V = 未被收录顶点中dist最小者 */
        if ( V==ERROR ) /* 若这样的V不存在 */
            break;   /* 算法结束 */
            
        /* 将V及相应的边<parent[V], V>收录进MST */
        E->V1 = parent[V];
        E->V2 = V;
        E->Weight = dist[V];
        InsertEdge( MST, E );
        TotalWeight += dist[V];
        dist[V] = 0;
        VCount++;
        
        for( W=0; W<Graph->Nv; W++ ) /* 对图中的每个顶点W */
            if ( dist[W]!=0 && Graph->G[V][W]<INFINITY ) {
            /* 若W是V的邻接点并且未被收录 */
                if ( Graph->G[V][W] < dist[W] ) {
                /* 若收录V使得dist[W]变小 */
                    dist[W] = Graph->G[V][W]; /* 更新dist[W] */
                    parent[W] = V; /* 更新树 */
                }
            }
    } /* while结束*/
    if ( VCount < Graph->Nv ) /* MST中收的顶点不到|V|个 */
       TotalWeight = ERROR;
    return TotalWeight;   /* 算法执行完毕,返回最小权重和或错误标记 */
}

Kruskal算法 将森林合并成树
初始状态下认为每一个节点都是一棵树
贪心的收录最小的边;
从边集合中将这个边删掉;
检查这个边是否构成回路,
如果构成回路就不收录(依然将其删除)
如果不构成就收录
检查是否完成

/* 邻接表存储 - Kruskal最小生成树算法 */

/*-------------------- 顶点并查集定义 --------------------*/
typedef Vertex ElementType; /* 默认元素可以用非负整数表示 */
typedef Vertex SetName;     /* 默认用根结点的下标作为集合名称 */
typedef ElementType SetType[MaxVertexNum]; /* 假设集合元素下标从0开始 */

void InitializeVSet( SetType S, int N )
{ /* 初始化并查集 */
    ElementType X;

    for ( X=0; X<N; X++ ) S[X] = -1;
}

void Union( SetType S, SetName Root1, SetName Root2 )
{ /* 这里默认Root1和Root2是不同集合的根结点 */
    /* 保证小集合并入大集合 */
    if ( S[Root2] < S[Root1] ) { /* 如果集合2比较大 */
        S[Root2] += S[Root1];     /* 集合1并入集合2  */
        S[Root1] = Root2;
    }
    else {                         /* 如果集合1比较大 */
        S[Root1] += S[Root2];     /* 集合2并入集合1  */
        S[Root2] = Root1;
    }
}

SetName Find( SetType S, ElementType X )
{ /* 默认集合元素全部初始化为-1 */
    if ( S[X] < 0 ) /* 找到集合的根 */
        return X;
    else
        return S[X] = Find( S, S[X] ); /* 路径压缩 */
}

bool CheckCycle( SetType VSet, Vertex V1, Vertex V2 )
{ /* 检查连接V1和V2的边是否在现有的最小生成树子集中构成回路 */
    Vertex Root1, Root2;

    Root1 = Find( VSet, V1 ); /* 得到V1所属的连通集名称 */
    Root2 = Find( VSet, V2 ); /* 得到V2所属的连通集名称 */

    if( Root1==Root2 ) /* 若V1和V2已经连通,则该边不能要 */
        return false;
    else { /* 否则该边可以被收集,同时将V1和V2并入同一连通集 */
        Union( VSet, Root1, Root2 );
        return true;
    }
}
/*-------------------- 并查集定义结束 --------------------*/

/*-------------------- 边的最小堆定义 --------------------*/
void PercDown( Edge ESet, int p, int N )
{ /* 改编代码4.24的PercDown( MaxHeap H, int p )    */
  /* 将N个元素的边数组中以ESet[p]为根的子堆调整为关于Weight的最小堆 */
    int Parent, Child;
    struct ENode X;

    X = ESet[p]; /* 取出根结点存放的值 */
    for( Parent=p; (Parent*2+1)<N; Parent=Child ) {
        Child = Parent * 2 + 1;
        if( (Child!=N-1) && (ESet[Child].Weight>ESet[Child+1].Weight) )
            Child++;  /* Child指向左右子结点的较小者 */
        if( X.Weight <= ESet[Child].Weight ) break; /* 找到了合适位置 */
        else  /* 下滤X */
            ESet[Parent] = ESet[Child];
    }
    ESet[Parent] = X;
}

void InitializeESet( LGraph Graph, Edge ESet )
{ /* 将图的边存入数组ESet,并且初始化为最小堆 */
    Vertex V;
    PtrToAdjVNode W;
    int ECount;

    /* 将图的边存入数组ESet */
    ECount = 0;
    for ( V=0; V<Graph->Nv; V++ )
        for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
            if ( V < W->AdjV ) { /* 避免重复录入无向图的边,只收V1<V2的边 */
                ESet[ECount].V1 = V;
                ESet[ECount].V2 = W->AdjV;
                ESet[ECount++].Weight = W->Weight;
            }
    /* 初始化为最小堆 */
    for ( ECount=Graph->Ne/2; ECount>=0; ECount-- )
        PercDown( ESet, ECount, Graph->Ne );
}

int GetEdge( Edge ESet, int CurrentSize )
{ /* 给定当前堆的大小CurrentSize,将当前最小边位置弹出并调整堆 */

    /* 将最小边与当前堆的最后一个位置的边交换 */
    Swap( &ESet[0], &ESet[CurrentSize-1]);
    /* 将剩下的边继续调整成最小堆 */
    PercDown( ESet, 0, CurrentSize-1 );

    return CurrentSize-1; /* 返回最小边所在位置 */
}
/*-------------------- 最小堆定义结束 --------------------*/


int Kruskal( LGraph Graph, LGraph MST )
{ /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */
    WeightType TotalWeight;
    int ECount, NextEdge;
    SetType VSet; /* 顶点数组 */
    Edge ESet;    /* 边数组 */

    InitializeVSet( VSet, Graph->Nv ); /* 初始化顶点并查集 */
    ESet = (Edge)malloc( sizeof(struct ENode)*Graph->Ne );
    InitializeESet( Graph, ESet ); /* 初始化边的最小堆 */
    /* 创建包含所有顶点但没有边的图。注意用邻接表版本 */
    MST = CreateGraph(Graph->Nv);
    TotalWeight = 0; /* 初始化权重和     */
    ECount = 0;      /* 初始化收录的边数 */

    NextEdge = Graph->Ne; /* 原始边集的规模 */
    while ( ECount < Graph->Nv-1 ) {  /* 当收集的边不足以构成树时 */
        NextEdge = GetEdge( ESet, NextEdge ); /* 从边集中得到最小边的位置 */
        if (NextEdge < 0) /* 边集已空 */
            break;
        /* 如果该边的加入不构成回路,即两端结点不属于同一连通集 */
        if ( CheckCycle( VSet, ESet[NextEdge].V1, ESet[NextEdge].V2 )==true ) {
            /* 将该边插入MST */
            InsertEdge( MST, ESet+NextEdge );
            TotalWeight += ESet[NextEdge].Weight; /* 累计权重 */
            ECount++; /* 生成树中边数加1 */
        }
    }
    if ( ECount < Graph->Nv-1 )
        TotalWeight = -1; /* 设置错误标记,表示生成树不存在 */

    return TotalWeight;
}

时间复杂度:E×logE

拓扑排序

解决类似排课问题;
AOV网络,活动表现在顶点上;合理的一定的有向并且无环(DAG)

/* 邻接表存储 - 拓扑排序算法 */

bool TopSort( LGraph Graph, Vertex TopOrder[] )
{ /* 对Graph进行拓扑排序,  TopOrder[]顺序存储排序后的顶点下标 */
    int Indegree[MaxVertexNum], cnt;
    Vertex V;
    PtrToAdjVNode W;
       Queue Q = CreateQueue( Graph->Nv );
 
    /* 初始化Indegree[] */
    for (V=0; V<Graph->Nv; V++)
        Indegree[V] = 0;
        
    /* 遍历图,得到Indegree[] */
    for (V=0; V<Graph->Nv; V++)
        for (W=Graph->G[V].FirstEdge; W; W=W->Next)
            Indegree[W->AdjV]++; /* 对有向边<V, W->AdjV>累计终点的入度 */
            
    /* 将所有入度为0的顶点入列 */
    for (V=0; V<Graph->Nv; V++)
        if ( Indegree[V]==0 )
            AddQ(Q, V);
            
    /* 下面进入拓扑排序 */ 
    cnt = 0; 
    while( !IsEmpty(Q) ){
        V = DeleteQ(Q); /* 弹出一个入度为0的顶点 */
        TopOrder[cnt++] = V; /* 将之存为结果序列的下一个元素 */
        /* 对V的每个邻接点W->AdjV */
        for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
            if ( --Indegree[W->AdjV] == 0 )/* 若删除V使得W->AdjV入度为0 */
                AddQ(Q, W->AdjV); /* 则该顶点入列 */ 
    } /* while结束*/
    
    if ( cnt != Graph->Nv )
        return false; /* 说明图中有回路, 返回不成功标志 */ 
    else
        return true;
}

关键路径问题

AOE网络每一条边代表一个网络
一般用于安排项目的工序
在这里插入图片描述
在这里插入图片描述
关键路径由绝对不允许延误的活动组成的路径。

旅游规划

城市为节点,公路作为边
权重1:距离
权重2:收费
首先在距离上找最短路,如果这个路不止一条就找收费最小的路。
首先运用单源最短路,
等距离时按收费进行更新,
其他的推广:

要求最短路径有多少条
加入count[s]
如果找到更短路,count[w] = count[v]
如果找到了等长的路径时 count[w] = count[v]+count[w]

在这里插入图片描述

要求边数最少的最短路
将cost[s] = 0
如果找到更短路时,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值