- 博客(446)
- 收藏
- 关注

原创 一文讲透多智能体框架 Open Manus | 全网独家深度解剖,代码级讲解它背后隐藏的秘密
prompt/目录中的内容,虽然不涉及具体的代码实现,但却在open_manus的智能体行为决策中起到了 至关重要的作用。Manus关注工具调用,确保任务执行的高效性。负责任务分解,优化任务规划和调整能力。SWEAgent专注于代码执行,确保 Shell 交互和代码编辑的准确性。这些 Prompt 定义了各个智能体的行为边界,使得open_manus能够在不同的任务场景下表现出合理的智能决策能力。接下来,我们将深入解析tool/文件夹,了解open_manus。
2025-03-19 22:03:33
2071

原创 【直观对比】RTX3090和RTX4090的计算能力的参数对比
随着大模型的火热,越来越多的人希望可以购买一个硬件进行大模型的推理,特别是在3090和4090显卡的对比上,需求比较大。目前已有的显卡对比,大多面向于和,如图所示。但是,对于消费级的显卡的计算能力的参数对比还比较少,更多的是对比游戏或者跑分的。由于工作需要,特地辗转了多方网站,整理了3090和4090的性能参数对比图,附带A100的参数用于衔接。从表中可以看出,在目前最常用的FP16上,4090和A100是一样的。也就是说,如果只是部署一个7B的模型,并且开了FP16,那么两者的推理速度应该是大致相同的。
2024-05-11 15:24:16
30466

原创 一文掌握大模型数据准备、模型微调、部署使用全流程
距离ChatGPT已经发布1年半了,距离我们训练出自己的大模型也已经1周年了。目前仍然有很多同学在咨询如何训练自己的大模型。这个东西和男/女朋友一样。当你不认识TA,距离TA很远,不敢接触TA的时候,TA就是很神秘,也很难接触。但是一旦当你愈发了解TA的时候,你就知道其实上手也很容易。之前我已经撰写了一个简单的训练大模型的代码,用于阐述大模型训练其实和原来的训练没什么两样。但是随着大模型深入到了每一个研究者的
2024-04-27 22:52:25
18571

原创 一文讲清chatGPT的发展历程、能力来源和复现它的关键之处
chatGPT是什么?这可能是最近被问的最多的一个。大家第一反应这应该是GPT系列的一个最新模型,普通大众可能更愿意把它看做是一个人工智能。实际上,它其实就是一个基于大规模语言模型的对话系统产品。官网对它定义十分的明确:Optimizing Language Models for Dialogue.最大的问题在于,它的背后究竟是一个什么?很多人都以为,chatGPT是一个单一模型,就如同GPT-1/2一样,应该是一个可以被加载和训练的。
2023-02-12 16:46:16
41722
19

原创 科研论文撰写相关工具一条龙服务指南
我们科研论文撰写过程需要很多注意的部分,例如,选择撰写平台、latex的图表的设计和制作,为自己的模型起一个名字,英文写作,还有参考文献的搜集和整理,以及适合的投稿会议候选等。本文将一条龙的介绍下去,保证科研论文撰写中遇到的主要困难都能够得到很好的解决。
2021-11-30 18:23:56
1157
1

原创 惊艳于红警开源代码?赏心悦目的代码注释,我们也可以 !
这几天,红警1的开源代码重现江湖,这个20年前,甚至25年前的代码,被我们所有的后来者所惊叹,这才是一个艺术品一般的存在。那么如果我们也想写出如此优美的代码,应该注意的事项有哪些?本文将讲述3个编码时需要注意的部分,并着重讲解如何编写出规范的代码注释并加以利用。
2020-06-10 13:55:45
34209
52

原创 3年长跑,修成正果
文章目录相遇相识相知相恋相守我和CSDN的故事很短,只有6个字:“人生若如初见”;我和CSDN的故事很长,我要用一生去讲。相遇2014年,我在计算机科学与技术这个曾经“万金油”的苦海里苦苦挣扎时,偶然间遇到了CSDN。无论什么问题,她都会耐心的解答。我需要什么材料,她都能给我帮助。在专业领域中,我感觉到她什么都知道。她的亲切、温柔、耐心、博学,还有她的美丽,让我一见钟情。我自认为自己幸运,...
2019-10-12 21:25:28
2787
27

转载 一文看懂25个神经网络模型
1. 引言在深度学习十分火热的今天,不时会涌现出各种新型的人工神经网络,想要实时了解这些新型神经网络的架构还真是不容易。光是知道各式各样的神经网络模型缩写(如:DCIGN、BiLSTM、DCGAN……还有哪些?),就已经让人招架不住了。因此,这里整理出一份清单来梳理所有这些架构。其中大部分是人工神经网络,也有一些完全不同的怪物。尽管所有这些架构都各不相同、功能独特,当我在画它们的节点图时……其中潜在
2017-06-17 10:26:08
254563
23
原创 【NLP基础知识系列课程-Tokenizer的前世今生第五课】从静态到可学:Tokenizer 的自适应演化之路
Vokenization 是一个跨模态的 token alignment 方法,为每个文本 token 匹配一个“视觉 embedding”,形成“视觉 token”或“voken”。在 NLP 或多模态任务中,我们一直使用固定的分词器(如 BPE、WordPiece)在训练前将文本分为 token。但这是一种静态方式,与模型参数解耦,与任务目标无关。Tokenizer,不再只是“tokenizer”,而是人工智能系统的输入分配器(Input Orchestrator)。是新的 token 表示。
2025-05-27 23:41:37
933
原创 【NLP基础知识系列课程-Tokenizer的前世今生第四课】生物信息中的 Tokenizer 策略:如何切开一段基因?
控制输入长度,压缩非线性结构显式聚焦功能片段,避免模型注意力稀释引入结构先验或从数据中自学习切分规律正如语言模型需要“分词”,蛋白质语言模型、分子语言模型、甚至交互药理模型,也需要找到它们的“词语单位”。Tokenizer,不再是文本处理的工具,而是知识结构的剪刀。未来,它将进一步融入结构建模、信号表达、合成建模任务中,成为生物智能系统的“语言入口”。
2025-05-27 23:26:45
886
原创 【NLP基础知识系列课程-Tokenizer的前世今生第三课】多模态世界中的 Tokenizer 策略
一个优秀的多模态 tokenizer,不只是“切词工具”,而是跨语言与感知之间的桥梁。一个模态压缩器(compressor)一个语义对齐器(aligner)一个结构提示器(structurer)tokenizer 与 encoder 融合为模态感知引擎动态感知上下文,灵活生成 token 序列从统一序列转向多模态图结构 token 表示下一篇,我们将走入非语言符号世界:基因、蛋白质、分子结构等生物序列,那些没有自然语言规律却承载复杂规则的序列,又该如何“切”?
2025-05-27 23:15:33
1077
原创 【NLP基础知识系列课程-Tokenizer的前世今生第二课】NLP 中的 Tokenizer 技术发展史
Tokenizer 不只是为了节省长度、提升效率,更是为了让模型对语言有更深入、系统的建模方式。今天的 tokenizer,已经从“静态规则”演进到“可学习模块”;从“辅助工具”升级为“认知中介”。而随着语言模型不断演进,我们也逐渐意识到:Tokenizer 不应当是障碍,而应当是助力。下一篇,我们将走进多模态时代的 tokenizer:图像、音频、视频、表格……这些非文本的输入,又是如何“被切”的?又如何与文本 token 融为一体?敬请期待。
2025-05-27 23:04:28
847
原创 【NLP基础知识系列课程-Tokenizer的前世今生第一课】Tokenizer 是什么?为什么重要?
当你读到“unbelievable”,你可以立刻意识到它是“un + believe + able”构成的,这种构词结构能让你快速理解它的意思。这个单位,就叫做 token,而设计这个单位的方式,就是 tokenizer。”,模型可能就要花更多精力才能拼凑出“哦,这是一个否定+动词+形容词构成的词”。我们可以看到,从语义结构最强的“句子”到最原始的“字节”,Tokenizer 划分的单位越小,信息越精细,但模型所承担的“组合理解”任务也越大。细了,理解变得困难。除了“切多大”,另一个问题是“怎么切”。
2025-05-27 22:49:24
830
原创 在 Linux 系统上连接 GitHub 的方法 (适用2025年)
在2025年,使用 Linux 系统连接 GitHub 的推荐方式是通过 SSH (Secure Shell) 协议进行身份验证。这种方式不仅安全,还能免去每次操作时输入用户名和密码的繁琐。
2025-05-27 17:04:52
706
原创 【计算机哲学故事2-1】进程与线程管理:专注比盲目忙碌更重要
我顿了顿,继续说道:“所谓‘一心多用’,其实只是快速切换,表面风光,内耗巨大。”我点头,“聪明的人,不是硬撑着开无数线程,而是清楚知道:什么时候该聚焦主进程,什么时候该暂停后台干扰。“进程,就像人生里的不同大领域——工作、学习、生活、情感,每个进程独立运行,切换一次进程,成本很高。“而线程,是在同一个进程里的细节任务,比如在‘工作进程’下,你同时开着回邮件、查资料、听电话,这些才是线程。我递给她一杯水,笑着提醒:“记住啊,遇到琐事缠身,别忘了启动死锁检测,及时清理,别让自己崩溃了。我笑了笑:“你知道吗。
2025-05-25 16:59:06
380
原创 【计算机哲学故事1-6】备份机制:给重要的人和事留“后路”
我笑着说,“只留那些真正改变过你生活的瞬间,比如你第一次一个人旅行的自拍,第一次夜里崩溃后给朋友发的语音,那些东西,不该被系统清理掉。我指了指窗外:“你有没有想过,其实我们人生中最怕的,不是痛快告别,而是到了下一个地方,突然想找点什么,却发现早就删了,连个备份都没留。”她低头看着屏幕,片刻后,点开了“iCloud照片”,勾选了几张不知名的截图,还有一个备注为“再看一次”的语音。”她抬眼看了我一眼,像听到老生常谈:“又来了。那就是全量备份的对立面,一刀切,空间确实省了,但有些东西删了就是没了,没法恢复。
2025-05-17 14:26:43
331
原创 【计算机哲学故事1-5】版本更新:拒绝停滞,成长是最好的修复
她低头看着手机,手指在屏幕上划来划去,像是在回顾这几年没点下去的“升级”。”她侧头瞪了我一眼,懒洋洋地说:“好啦好啦,我又不是不知道,你讲它的次数都比提起我的次数还多了。忽然,她皱起眉头,嘟囔了一句:“又弹更新提醒了,这破系统一天到晚催我升级,真烦。”她撇撇嘴:“用得好好的,干嘛非得更新?她看着手机屏幕,沉默良久,最终还是轻轻一笑,果断地点下了“立即更新”。”我也笑了:“人生没有完美版本,但持续优化,才是最好的修复。”我笑了笑,“那时候没人问你愿不愿意,直接推送——升学、考试、毕业,系统自动迭代。
2025-05-14 13:34:48
305
原创 全景系统监控利器:Glances 使用介绍与实战指南
Glances 是一款基于 Python 的跨平台系统监控工具,可以在命令行中以全景式视图展示系统资源使用情况。它的核心理念是 “少即是多(Less is more)”,在一个屏幕中集中展示最重要的信息。CPU 使用率(整体与每个核心)内存、Swap 使用率磁盘 I/O 情况网络传输速率系统负载 Load Average活跃进程列表(PID、CPU、MEM 等)支持 Docker 容器、RAID 状态、GPU、温度等插件扩展SSH 登录远程服务器时实时监控。
2025-05-13 15:52:56
617
原创 【计算机哲学故事1-4】权限控制:动态分配角色,守护你的核心世界
我笑着答道,“只授予完成任务所需的最低权限,干完就撤销,动态管理,绝不留死角。朋友也分层,有的只能‘只读’,有的可以‘评论’,真正亲密的,才配‘编辑权限’。”她语速飞快,像是在清点一天的情绪账单,“关键是,这些事根本不关我的事,可我总觉得,拒绝了好像很冷漠,不帮又觉得心累。”我枕着手,望着天花板,“我本科做EMP系统的时候,第一次接触到RBAC——基于角色的访问控制。我微微一笑,顺着她的话说道:“嗯,权限管理,不是为了隔离世界,而是为了守住自己的核心。好啦,你的号我现在已经封了,睡觉吧。
2025-05-09 09:59:01
335
原创 【计算机哲学故事1-3】默认设置:在有限的系统里,决定你想成为什么
我指了指屏幕上的桌面,“虽然开机默认都长一个样,但从这一刻开始,你有了自定义的空间。”我点头,“提了权,才有资格去管理那些系统默认塞给你的‘程序’——比如社会标签、他人期待、无效焦虑。”我回答,“深度自定义从来都是有风险的。她盯着屏幕上熟悉的蓝色窗户,语气里透着一丝无奈:“我发现,不管买多少次新电脑,开机那一刻,看到的永远是同一张桌面。我点头:“真正的自由,是在你改不了的BIOS下,敢于掌控操作系统,卸载不需要的预设,装上自己想要的人生程序。她笑着推了我一把,目光坚定地开始操作她的“人生桌面”。
2025-05-08 17:15:11
312
原创 github之高效团队协作:GitHub 项目分支管理与协作全指南
一个结构清晰、规范明确的 GitHub 协作流程,能大幅度提升团队的开发效率和产品质量。从项目结构到分支策略,从 CI/CD 到代码审查,再到成员分工和敏捷协作,全面打造专业、高效的团队协作环境。如果你的团队刚刚起步或尚未规范协作方式,现在正是建立这一体系的最佳时机。
2025-05-06 17:21:24
1241
原创 【ACL系列论文写作指北14-科研心态与抗压管理】-走得远,比走得快更重要
科研是一场持久战,胜负从来不取决于一时的得失,而在于谁能笑到最后。愿你在面对每一次拒稿、每一个深夜未果的实验时,都能告诉自己:“这很正常,我会变得更强。无论风雨,始终向光而行。
2025-04-28 13:23:46
875
原创 【ACL系列论文写作指北13-科研方向把控】-从选题到格局
❌ 跟风热点,忽略自身优势。❌ 方向散乱,缺乏主线思维。❌ 只盯短期论文,缺少长期科研布局。
2025-04-28 13:17:59
1100
原创 【ACL系列论文写作指北06-总结部分怎么写】-收好尾,留余韵
审稿人读到最后,Conclusion 是对整篇论文的总结+升华。好的结论:强化你的贡献点,深化印象。勾勒研究的未来方向,展现科研格局。避免无意义的重复,让读者记住你的亮点。精准总结、价值升华、展望未来目的:再次强化读者对你主要贡献的记忆点。示例句式❌ 直接复制粘贴Abstract里的句子。❌ 重复Introduction中的背景和动机。❌ 未来工作一句话带过,缺乏科研格局感。让人记住的不仅是你的方法,还有你的科研视野与未来价值。
2025-04-28 12:31:47
894
原创 【ACL系列论文写作指北04-方法部分怎么写】-清晰表达创新方案
目的:让读者快速理解方案全貌。细节建议配合流程图或架构图。简述输入、处理流程、输出。示例句式写好方法,让你的科研方案“看得懂、学得会、用得上”。
2025-04-28 11:30:27
587
原创 【ACL系列论文写作指北03-相关工作怎么写】-展示视野与定位创新
目的:体现批判性思维,发现改进空间。细节委婉而明确地指出不足,特别是跟我们研究内容相关的部分。避免绝对否定,用“However”, "Nevertheless"等过渡词。示例句式写好相关工作,才能让你的研究站在巨人的肩膀上被看见。
2025-04-28 11:25:47
849
原创 【ACL系列论文写作指北02-引言怎么写】-构建科研开场白
很多新手写作时会疑惑:“摘要和引言不都是介绍研究背景和工作概况吗?为什么要写两遍?其实,摘要和引言虽然都承担着“介绍”的作用,但它们的定位、读者对象、内容深度维度摘要(Abstract)引言(Introduction)📌 目的全文浓缩,快速传达核心信息展示科研问题、动机、方案背景,铺垫研究价值🎯 读者对象审稿人、检索者、潜在引用者,快速了解是否值得深入阅读已决定阅读全文的读者,理解研究背景与逻辑📝 内容深度高度概括:任务、问题、方法、结果、贡献,一句话讲清。
2025-04-28 11:15:37
904
原创 【ACL系列论文写作指北01-摘要怎么写】-从理解到落笔
我解决了什么问题,怎么解决的,效果如何。不是技术细节罗列,而是价值呈现。一段话,四层逻辑,每一句都有使命。目的:让人记住你提出了什么新方法。细节明确提出方案名称(便于传播)。描述创新点的核心思想,避免展开细节。句式推荐示例明确四大问题答案。按四步法搭建框架。完成初稿。精炼打磨,突出亮点。邀请同伴审阅,验证是否“好懂、够强”。不要追求一稿定稿,好的摘要都是“写出来的”,先完成框架,再反复优化。任务、方法名要亮眼。结果要量化。避免空话套话。
2025-04-28 11:07:05
707
原创 【计算机哲学故事1-2】输入输出(I/O):你吸收什么,便成为什么
我指了指她甩开的手机,“计算机有个最基础的机制,叫I/O,输入/输出。”我继续说道,“靠的不是临时爆发,而是在预训练阶段,吃进了海量高质量的数据。模型的上限,早在输入的时候就被定了。果然,几秒后,她重重地叹了口气,甩开手机:“真搞不懂,为什么我越忙,越觉得自己一事无成。“还有,”我补充道,“计算机不会什么都接受,输入前先看协议、格式标准。我笑着摇头:“其实,更糟糕的是,你不仅输入的是垃圾,还在超负荷输入。我靠在沙发背上,慢悠悠地说:“你有没有想过,你的问题,不在于‘输出不够好’,而在于——你输入了什么?
2025-04-27 23:16:58
406
原创 【计算机哲学故事1-1】她问我该怎么选,我说人生其实只有0和1
我继续说道,“它们虽然单调,却因为有了规则,才变得强大。”我点头,“而且计算机只靠三种运行模式:顺序、条件、循环,就能把最简单的二进制,演绎成无限复杂的世界。每一个‘0’或‘1’,看似微不足道,但正是这些不断叠加的决定,才拼出了你独一无二的人生程序。”我放下杯子,指了指她的笔记本电脑,“计算机的世界,再复杂的系统,最底层都只认两个数字——0和1。我笑着说:“选哪个并不重要,重要的是,别让自己卡在光标闪烁的界面上。那是我们都熟悉的模样——面对选择,不敢选,不想选,却又不得不选。面对选择的时候,会犹豫吗?
2025-04-27 23:15:38
290
原创 一文搞懂 LLM-as-a-Judge 评估范式,附 AlpacaEval 实战指南
LLM-as-a-Judge,顾名思义就是让大型语言模型作为“评审者”来打分其他模型的输出。这种范式背后的基本逻辑是:“如果 GPT-4 是目前最强大的语言理解模型之一,那我们为何不让它来判断其他模型的表现呢?指令跟随任务(Instruction Following)多轮对话生成自由生成文本对比(Freeform Generation)AlpacaEval 就是 LLM-as-a-Judge 范式的代表实现之一,使用 GPT-4 Turbo 对模型输出进行成对比较,并输出“哪一个更好”的判定。
2025-03-29 16:51:29
827
原创 Python 包管理器 UV 全面介绍
今天看到一个新的工程,推荐我用UV进行包管理器,作为一个10年老python人员,我居然不知道UV是什么。于是,我就去查了一下UV。
2025-03-27 10:10:37
3638
原创 AI又来了,程序员又慌了吗?
每一次技术革命都会伴随焦虑与恐慌,从蒸汽机到计算机,再到人工智能,我们经历的变化从未停止。但历史告诉我们,技术不会毁灭人类,而是让人类进化。与其问“AI 会不会取代人类”,不如问**“如何让 AI 成为更好的工具?”**AI 时代的未来,并不取决于 AI 本身,而是取决于我们如何使用 AI。
2025-03-17 23:01:35
586
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人