2019斯坦福CS224n深度学习自然语言处理笔记(4)——反向传播与计算图

矩阵梯度下降及一些小贴士 计算图模型与反向传播 其他一些你应当知道的内容 正则防止过拟合 向量化 非线性 初始化 优化 学习率 1. 矩阵梯度下降及一些小贴士 1.1 梯度下降 还是上节课的梯度下降,我们首先回顾一下: ∂s∂W=δ∂z∂w=δ∂∂wWx+b\frac{\partial s...

2019-04-17 16:38:57

阅读数 903

评论数 0

leetcode(24):Unique Paths(不同路径)

这周我们重温一下经典的格子世界。 1. Unique Paths(不同路径 62) 1.1问题描述 A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below). T...

2019-04-14 18:52:56

阅读数 40

评论数 0

2019斯坦福CS224n深度学习自然语言处理笔记(3)——分类模型与神经网络

前两章算是引言,主要介绍了什么是自然语言处理,以及自然语言处理中最基础的工作——如果和表示词的意思的相关工作。接下来,主要介绍一下分类模型和神经网络,并以命名实体识别和词窗口分类举例说明。最后简要介绍一下矩阵运算。 1. 什么是分类? 为了给没有基础的同学介绍一下背景,这里首先简要介绍一下分类。所...

2019-04-11 17:15:41

阅读数 93

评论数 0

2019斯坦福CS224n深度学习自然语言处理笔记(2)——词向量与Glove

继续上一节的内容。还是沿着之前的思路,首先想到为什么不直接使用词共现矩阵,然后提出SVD的解决方法。在比较了基于统计和直接预测两种方法后,提出Glove模型。接着对于词向量的评估方法和一词多义问题提出相应的解决方法。 1. 为什么不直接使用词共现矩阵获得词向量? 在上一节中,最后提出一个问题,为什...

2019-04-08 10:43:06

阅读数 111

评论数 0

LaTex 基本使用(一)

文章目录1. LaTex 项目组成2. XX.bib文件与XX.bst文件3. XX.sty文件与XX.cls文件4. XXX.tex文件4.1 关键字语法4.2文章结构4.3 常用命令4.4 列表4.5 表格4.6 引用与脚注5. 补充5.1 公式5.2 插入图表 1. LaTex 项目组成 在...

2019-04-07 16:48:15

阅读数 55

评论数 0

leetcode(23): Jewels and Stones(771 石头与宝石)

1. 问题描述 You’re given strings J representing the types of stones that are jewels, and S representing the stones you have. Each character in S is a t...

2019-04-07 14:02:21

阅读数 65

评论数 0

2019斯坦福CS224n深度学习自然语言处理笔记(1)——绪论与Word2Vec

本文内容整理自2019年斯坦福CS224n深度学习自然语言处理课程,其笔记为本人听课心得,重点在于对于知识内容的思考,并非课程原文笔记,应称为课后笔记。 1.绪论 在本堂课中,其基础技能需要懂得并应用:Ipython,numpy和Pytorch。其他的关于自然语言处理和深度学习,上了这堂课,你就会...

2019-04-04 13:15:57

阅读数 192

评论数 0

统计学习方法——最小二乘法及其具体实现

1. 引言 最小二乘法作为线性拟合常用的一种方法,被广泛应用于各种数据拟合的方法中。曾经在某软时,也遇到这题,今有幸弄清最小二乘法的原理和计算方法,特地分享出来,供大家查阅和指点。 本文主要内容如下: (1)介绍最小二乘法原理和相关知识 (2)介绍最小二乘法的计算方法 (3)使用Matlab进行最...

2019-03-21 11:11:34

阅读数 162

评论数 2

认清事实,直面裁员

1.引言 从2018年底到2019年初,就已经爆出几乎所有的互联网大厂都进行裁员的消息。不少人指责公司不念旧情,不顾自己未来,强行性、突然性的使得自己被裁员。这似乎意味着编程人员整体就业趋势更加严峻。之前的讨论中,多是以亲身体会的复述,从当事者的角度来描述裁员为社会、公司和个人带来的巨大影响。本文...

2019-02-21 15:05:14

阅读数 137

评论数 0

Vue入门系列(1)项目的创建、数据的绑定

Vue也是做微信小程序时得来的兴趣。因为微信小程序的前端做的确实太便捷。深入了解后,发现Vue就是长这样子,并且只有略微的不同。因此打算先入手Vue练练手。 1.创建简单的实验项目 和往常一样,我们只需要在项目文件夹中建立三个文件: index.css //样式文件 index.html //主...

2019-01-02 21:35:20

阅读数 94

评论数 0

人工智能会取代人类吗?

人是具有学习性的,人工智能目前看来也是可以学习的,也就是当人工智能在某些任务上,随着样本数的增加,其性能会不断的提升。但是我们也都知道,如果样本足够大,那么就能够覆盖尽可能的情况,从而让人工智能的正确率得到提升。但是如果我们给予它相同的样本,当模型已经学习到这个样本后,它很难会有更大的改进。但是如...

2018-12-16 08:52:38

阅读数 499

评论数 2

我们该如何看待儿童编程?中年危机?

目前儿童编程在发达的东部沿海地区早已经是遍地开花,尤其是现在风头最盛的人工智能,甚至已经出到幼儿园级别的教材了。那么,儿童编程到底是什么,意义是什么? 在中国,儿童编程之所以令人感到吃惊,不是因为它是多么新鲜的事情,而是因为我们以为儿童编程等于成人编程,等于儿童可以从事专业程序员所做的生产活动。我...

2018-12-08 21:29:53

阅读数 1127

评论数 1

人工智能与我们的世界

最近看到的小爱同学已经可以召唤小冰了,这是一个有益的尝试。也是人工智能体互相交互的一个开端。目前还尚未做到小爱同学和小冰的自然交流,但是至少已经具有了一定的交互。相信在不久的将来,将会有越来越多的人工智能体加入人工智能的世界。 ...

2018-12-04 19:21:30

阅读数 2616

评论数 5

生物工程?人工智能?我们的未来在何方。

二十一世纪是什么时代,是生物工程的时代。这句话在二十世纪末到二十一世纪初都被广泛传播。我高中时期,仍然听到的是生物工程,尤其是基因工程在二十一世纪将会对人类的生活发展有着变革性影响。后来随着互联网和人工智能的发展,信息时代的声音逐渐占据了主流。 直到最近几天,剔除了艾滋病基因的双胞胎的出世,让人们...

2018-11-27 23:58:37

阅读数 2583

评论数 38

人工智能真的具有创造力?

目前,人工智能几乎是最热的名词,有的人对人工智能报以热忱,有的人则是拒之千里,还有不少人对于人工智能是心存恐惧。而在《生命3.0》书中,作者对于人工智能在部分领域可以做到比人类更好的状态并不担心。就像他自己描述的一般,曾经的纺织机极大的剥夺了手工纺织工人的工作,但作者既不是对纺织有兴趣,也不是以纺...

2018-11-25 23:32:03

阅读数 438

评论数 1

我们离欧米茄团队还有多远——《生命3.0》读后感系列

在《生命3.0》的引言中,作者提出了一个强人工智能普罗米修斯,它的创作团队为欧米茄团队。我这里先简要介绍作者描述的美好世界。 在普罗米修斯诞生之初,欧米茄团队租用了一个没有接入互联网的计算机集群,有一份互联网的本地副本以供它学习。而它的第一个目标就是改进自己(编写人工智能系统)。这个改进速度之快,...

2018-11-20 23:08:15

阅读数 437

评论数 0

宇宙简史——天有多高

1.前言 在地球上,我们总是会问天有多高,其实我们看到的云多半也就是在对流层即8-17千米,而民航飞机则是在17-55千米的平流层飞行,这也是为什么当我们去坐飞机的时候,软软的云都是在我们的下面。但是,我们这是在讨论宇宙,那么这里所谓的天有多高的另一个说法,就是宇宙有多大。 2.测量方法 在地球上...

2018-11-18 15:37:34

阅读数 212

评论数 0

宇宙简史——星光中有什么秘密?

0.前言 作为一名程序员,之所以对宇宙充满了兴趣,是因为好奇心的驱使。也是从小的一个梦想,因此借此机会学习一些关于宇宙的“科班”知识。 1.星光 天空中闪闪烁烁的星光,时常引发我们的想象,最为广为流传的比喻,是天上的星星在向我们眨着眼睛。那么这闪闪烁烁的星光,对于我们来讲意味着什么呢?远远的恒星遥...

2018-11-10 17:03:14

阅读数 359

评论数 0

宇宙简史——我们在哪儿

我们在哪儿?这个话题是我们要讨论的第一个话题。 1.地心说 从古希腊的同心球模型开始,人们对于自己处于宇宙的位置就有了初步的探索。人们根据近处的物体移动的较快,远处的物体移动较慢的视差变化,从而总结出了地心说。但是由于行星逆行和亮度的变化,导致同心球模型并不能很好的预测所观测的现象。 这时候,托勒...

2018-11-07 23:13:25

阅读数 116

评论数 1

机器学习习题(18)

1、中文同义词替换时,常用到Word2Vec,以下说法错误的是 A. Word2Vec基于概率统计 B. Word2Vec结果符合当前语料环境 C. Word2Vec得到的都是语义上的同义词 D. Word2Vec受限于训练语料的数量和质量 参考答案:C 解析:Word2Vec是常用的...

2018-11-06 11:02:29

阅读数 386

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭