自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(268)
  • 论坛 (1)
  • 收藏
  • 关注

原创 增加你的生产力!VS Code程序员鼓励师插件,你值得拥有!
原力计划

1. 前言前几日,我们还在红警优美的代码中沉醉,最近这几天,我们又发现宝了!一个鼓励你写代码的插件!它声称可以在你写代码的时候,给你鼓励,伴你前行!它具体是个什么东西呢?我们先来看看一个第三方的评价吧:简而言之,就是能根据代码关键词,播放贴近代码意义的语音,在你编程的过程中,疯狂输出赞美。真的是,萝莉音程序员鼓励师24小时在线,陪你 coding 到天明。内置中文语音包采用真人语音,支持 JavaScript 语言的常用关键字(支持到 ES6 版本)。不仅如此,还有专门针对时间的语音。比如连

2020-06-22 15:51:43 21451 66

原创 惊艳于红警开源代码?赏心悦目的代码注释,我们也可以 !
原力计划

这几天,红警1的开源代码重现江湖,这个20年前,甚至25年前的代码,被我们所有的后来者所惊叹,这才是一个艺术品一般的存在。那么如果我们也想写出如此优美的代码,应该注意的事项有哪些?本文将讲述3个编码时需要注意的部分,并着重讲解如何编写出规范的代码注释并加以利用。

2020-06-10 13:55:45 30644 52

原创 看一次就会的python正则表达式的使用指南
原力计划

前言正则表达式作为一名合格的程序员的必备的基本技术之一,其有用性不言而喻。但是它为什么会非常难以掌握,甚至想用一用也都感觉难以下手呢?本文将会让你一次就看会如何使用Python正则表达式。1. 正则表达式的组成在介绍如何使用Python的正则表达式时,我们需要先认识一下正则表达式的各种功能,以及其组成形式如何。正则表达式可以从非结构化的文本中提取到我们想要的内容,其本质为模式匹配,也是体现...

2020-03-06 22:31:11 9887 21

原创 3年长跑,修成正果

文章目录相遇相识相知相恋相守我和CSDN的故事很短,只有6个字:“人生若如初见”;我和CSDN的故事很长,我要用一生去讲。相遇2014年,我在计算机科学与技术这个曾经“万金油”的苦海里苦苦挣扎时,偶然间遇到了CSDN。无论什么问题,她都会耐心的解答。我需要什么材料,她都能给我帮助。在专业领域中,我感觉到她什么都知道。她的亲切、温柔、耐心、博学,还有她的美丽,让我一见钟情。我自认为自己幸运,...

2019-10-12 21:25:28 2167 27

转载 一文看懂25个神经网络模型

1. 引言在深度学习十分火热的今天,不时会涌现出各种新型的人工神经网络,想要实时了解这些新型神经网络的架构还真是不容易。光是知道各式各样的神经网络模型缩写(如:DCIGN、BiLSTM、DCGAN……还有哪些?),就已经让人招架不住了。因此,这里整理出一份清单来梳理所有这些架构。其中大部分是人工神经网络,也有一些完全不同的怪物。尽管所有这些架构都各不相同、功能独特,当我在画它们的节点图时……其中潜在

2017-06-17 10:26:08 163498 20

原创 段落向量与句子向量表达

这是Tomas Mikolov的一篇关于段落向量和句子向量的论文。本文是我翻译加自我理解的结果,如需要更详细的介绍,请看英文文献。摘要许多机器翻译的算法都需要使用固定长度的词向量特征。在到达文本层面时,我我们最常用的一个固定长度的特征时词袋模型。尽管他们很流行,但是词袋模型有两大缺点:1、失去了词序特征;2、忽略了语义特征,例如,powerful与strong和Paris距离都是非常远的。在本文中,

2017-05-20 17:08:27 26001 20

原创 学术会议演讲视频录制全方位指南

1. 引言随着进入后疫情时代,在线学术会议愈发频繁。从CCF-A类会议到C类会议,基本上都需要做线上的Oral。一般的要求就是录制一个15分钟左右的Presentation,然后上传至网站即可。有些会议还贴心的准备了加载字幕的功能,我们的英语水平基本都是有自知之明的,所以如果想让别人更好的理解我们的想法,建议增加手工字幕(自动字幕都是自动识别的,但是性能堪忧)。接下来,我们将介绍一个完整的演讲录制过程。2. 录制视频对于视频的录制,基本上会议都有一定的要求,例如要求16:9的视频以及PPT,清晰度

2021-05-29 21:46:44 66 1

原创 【论文解读】人工智能中的深层结构学习(Learning Deep Architectures for AI)

强烈推荐,这篇论文不仅仅是2018年图灵奖得主之一的Bengio大神著作,也是很好的人工智能入门材料。强烈建议阅读英文原版,其写作风格真的是深入浅出,可以细细品尝。0. 摘要理论结果表明,为了学习可以代表高级抽象的复杂功能(例如,在视觉,语言和其他人工智能任务中),可能需要深层结构。 深层结构由多个级别的非线性运算组成,例如在具有许多隐藏层的神经网络中或在重复使用许多子公式的复杂命题公式中。 搜索深层结构的参数空间是一项艰巨的任务,但是最近提出的为了解决该问题的学习算法,例如深度信念网络,取得了显著成功

2021-04-13 15:42:56 29 1

原创 【论文解读】DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances

文章来源:AAAI 2021文章地址:https://arxiv.org/pdf/2012.01775.pdf摘要最近的预训练模型极大的改进了基于神经网络的回复生成。然而现有的方法通常将对话上下文看作是一个线性的Token序列,这样的字符及编码方式阻碍了探寻对话建的篇章连贯性。文本提出DialogBERT,一种新型的对话回复生成模型来增强之前的PLM对话模型。DialogBERT使用一个层次化的Transformer架构。为了更有效的捕获篇章级连贯性,我们提出两个训练目标,包括对话掩码回归和分布式对话

2021-04-12 21:48:55 118 1

原创 英文单词之说文解字(9)

前言与传统的常规词汇不同,从这次开始,我们要记忆的是专业词汇,这些词汇大多都是有规律可循的,因为都是有关科学的。本次共学习约70个单词,而且只需要理解记忆一遍,你就可以记住了。最近的一个对于英语的语言说法比较认可的是,为什么英语的词汇的规律会非常的复杂,而且杂乱无章呢,即使是词根词缀,仍然是一词多义现象很多。其实这是因为英语的来源没有统一,现代英语融合了很多国家的语言,例如法语、拉丁语、德语、北欧语,这是历史的结果。也正因为它融合了很多国家的语言,使得其传播阻碍就降低了很多,被很多国家接受,从而成为了

2021-03-21 16:31:46 55

原创 长风破浪会有时,直挂云帆济沧海——纪念2020,展望2021

引言2020年是一个所有灾难片都快集齐的神奇年份。开年之初的疫情,让所有人都为之震惊。澳大利亚的和美国西部的大火不知道燃烧了多久。非洲、中东地区的蝗灾,所幸没有殃及我国。但是年中的洪水,让我们都回忆起了98年的险情。我们喜爱,又陪伴我们青春的明星们,一个接一个离我们而去。国际局势也纷繁复杂,英国脱欧、美国退群、局部冲突不断。在今年即将结束的这几天的寒潮,像《后天》一样速冻了全国。2020注定是不平凡的一年。借着CSDN年度征文的机会,梳理一下今年的所见所闻,所做所想。1. 在CSDN上有

2020-12-27 11:32:04 663 1

原创 手把手教会你在Linux服务器上安装用户级别的CUDA

0. 问题引入随着深度学习的发展,越来越多的人都加入这个行业中来,然而计算资源有限,很多时候我们很多人都在共用一个服务器,而且多半是没有管理员权限的。那么怎么能够安装自己的运行环境呢?有两个部分需要注意的,一个是底层的驱动+cuda,令一个是上层的conda环境。对于conda的环境的安装,已经非常容易了,如果你只需要一个虚拟环境,那么你可以看一下:《conda的安装与使用》,但是更难的,是安装自己的CUDA,因为有些python的包需要特定的版本,比如LTP需要pytorch1.6以上,而pytorc

2020-11-30 16:11:50 1262 6

原创 转战pytorch——XLNet初体验(5)

1. 前言几个月不见,huggingface的transformer框架在代码层面也早就已经完成了大一统预训练模型,在前几个文章里介绍的很多代码都已经集成到框架之中了,而且通过层层继承和多态,使得你很难再一下就能看出其逻辑了。并且,连训练测试过程都开始朝着曾经keras的方向发展了,使用一个Trainer作为实验实例,只需要传递给其模型和数据集,它就可以自动完成模型的训练和保存。我似乎看到了Pytorch版的keras的影子。鉴于之前的代码和模型都已经被transformer统一整理集成了,因此这里则介

2020-11-15 20:32:56 639 4

原创 【论文解析】隐式篇章关系分类:我们需要谈一谈评估 (ACL 2020)

论文地址:https://www.aclweb.org/anthology/2020.acl-main.480.pdf代码链接: https://github.com/najoungkim/pdtb3论文摘要本文重新审视了之前在PDTB2.0版本上各个工作的一些差异,并且提出一个统一的评价标准,并且显示出了预训练模型可以取得远超目前最优模型。另外他也对于PDTB3.0与PDTB2.0的变化进行了描述,并对于细颗粒度分类进行了一些实验,为下一步的工作打下基础。论文拟解决的主要问题在PDTB2.0上

2020-10-12 16:53:37 210

原创 【论文解析】抽象摘要中基本语篇单位的构建(ACL 2020)

本文的起点最近的抽象式摘要都是对于提前抽取的每个句子进行精简或者重写,但是一般来讲,有些句子是连贯的,例如需要合并2个句子为1个句子。想去做一个新的摘要方法,相比较句子级别的摘要,它能够更有信息量,也更精简。待解决的问题,一个是哪些EDU应该被挑选出来;另一个问题是如何将这些EDU去拼接成一个更流畅的摘要。贡献使用EDU代替句子作为基本的抽取单元(与另一篇一样)使用强化学习应用到EDU的选取上(其实之前也有类似的工作,文中也提到)提出重写时,是根据其EDU所属的块进行重写,完成既精简,又可以保

2020-10-12 14:18:18 118

原创 【论文解析】篇章感知的神经抽取式文本摘要(ACL 2020)

本文的贡献与之前的抽取式不同的是,本文使用的是基本篇章单元(EDU)而不是句子作为抽取(选择)的元素,这样可以进一步减少一些冗余和无用的信息。本文利用了篇章关系和指代关系,使用依存图的形式进行了图卷积编码后,辅助关键句的挑选,这样可以帮助解决长依赖关系(但是没有直接给出例子)。本文的模型整篇文章使用一个BERT进行编码,然后每个句子使用标记进行包裹,对于每个EDU,则使用SpanExt抽取其特征,获得隐藏层h作为每个节点的表示,再通过右边的图卷积模型进行节点分类。这里的BERT编码使用的是

2020-10-10 17:37:18 418 1

原创 英语能力测试(1)

本次题目主要用于日常检验英语能力。Mary likes to help her mother by cooking dinner ______cleaning the house. Which one of the following words should be used in place of the blank space in the sentence above?A. orB. byC. atD. butE. from答案: A解析:可以看到空格前和空格后都是动名词短语,

2020-08-26 19:02:13 260

原创 备战原创博主大赛,如何写出一篇属于自己的好文章?

1. 前言最近CSDN又举办原创博主大赛了,我作为博客专家、CSDN内容合伙人、首页内容推荐官,也经常和CSDN的小伙伴们一起讨论如何提升博文的质量。有些小伙伴虽然技术心得有很多,但是写出来的博文自己都不满意,而且访问收藏量也没有达到预期。网上之前也有很多大佬介绍过如何写一篇好博客,如程女神的《增加你的博客访问量》,《如何写一篇好的技术博客》等等。但是,他们大多是从动机,从意义开始讲起,真正下笔时,仍然不得技巧。因此,本文特地介绍4个切实可行的方法来提升大家的文章的质量:首先为博文“起一个好名字”;然

2020-08-20 20:50:02 882 3

原创 一步一步,手把手带你用最简单的方法,在linux上安装anaconda

1 前言本文将会一步一步用最简单的方法,手把手带你在linux上安装anaconda,不改文件,不需要管理员权限,普通用户也可以操作!当我们想利用服务器进行深度学习/数据分析时,我们通常需要使用Python环境。尽管目前Linux都自带了python环境,但是由于原版的Python的pip还是存在很多兼容性问题,因此,一方面为了能够对新手友好一些,另一方面为了保证环境的存粹性,我们还是提倡使用anaconda进行程序的开发。本文的出发点是,当我们创建了一个非系统管理员的用户时,这时候使用Pip ins

2020-07-26 09:30:46 1053

原创 标注有错误?教你使用置信学习将样本错误标识出来!
原力计划

前言置信学习也叫信心学习(Confident Learning ,CL),它是一个新兴的、原则性的框架,用于识别标签错误、描述标签噪声。网上对于这个置信学习描述也挺少的,主要有这一篇:《数据集中存在错误标注怎么办? 置信学习帮你解决》。它主要介绍了置信学习是什么,有什么用。总体来讲是翻译了国外的一个博客,这里大致讲述一下其内容,有很多晦涩难懂的。首先抛出了一个惊人的事实,那就是我们常用的ImageNet 中可能至少有 10 万个标签有问题。这是令人吃惊的,因为我们都会认为标注的标签是正确的。但是,对于

2020-07-17 19:08:00 1115

原创 跨领域迁移的连贯性模型(ACL 2019)
原力计划

本文为ACL 2019的论文A Cross-Domain Transferable Neural Coherence Model的读后感。1. 论文主旨本文主要是面向跨领域的连贯性建模的相关研究。采用的是一个局部判别模型,可以使用更少的负样本来训练识别不正确的句子顺序。实验证明他们采用的方法既简单又能够在WSJ上显著的超过当前最好的方法,在开放域上更是取得了很好的效果。2. 论文的起点现有的连贯性模型都是特定领域的,这样会使得模型捕获到的不一定是语义上的连贯,而是结构线索的过拟合。2.1 本文想要

2020-07-05 16:20:05 312

原创 如何使用远程打印机?简单3步就可以做到!
原力计划

1. 前言首先讲一下故事背景:办公室里有一台公用打印机HP M1213nf,这台打印机支持网络打印,但是,由于网线的缺乏,因此只能在宿主机(win10)上使用,而不能单独联网。每次打印都需要拿U盘拷贝到宿主机上,然后使用宿主机打印。这十分的不方便,因此我们想通过一种方法,使得每个人都可以在自己的电脑上(客户机)自由的选择这个打印机打印,也就是使用远程打印机。于是,我们就在百度上搜索类似的条目:“win10怎么远程连接网络打印机”,其出来的结果既复杂,也不适用于我们这样的场景。(它一般是针对于打印机直连

2020-07-02 09:37:48 2520

原创 神奇英语语法系列(三)——状语从句

今天介绍三大从句的最后一个:状语从句。状语从句定义状语从句是指句子用作状语时,起副词作用的句子。状语从句中的从句可以修饰谓语、非谓语动词、定语、状语或整个句子。状语从句 根据其作用可分为时间、地点、原因、条件、目的、结果、让步、方式和比较等从句。简单来说,名词性从句都是当实词在句子中做成分,例如,主语、宾语、同位语等,而定语从句则时修饰这些成分的句子,和形容词差不多,今天的状语从句则是修饰剩下的部分,如谓词、时间、原因、条件等等。状语从句类型下面我们具体讲讲不同类型的状语从句。地点状语从句以

2020-06-21 14:04:54 541

原创 神奇英语语法系列(二)——名词性从句

本文将会介绍第二部分,名词性从句。1.名词性从句定义名词性从句是在句子中起名词作用的句子。 名词性从句的功能相当于名词词组, 它在复合句中能担任主语、宾语、表语、同位语、介词宾语等,因此根据它在句中不同的语法功能,名词性从句又可分别称为主语从句、宾语从句、表语从句和同位语从句。2.名词性从句特征具有连接词,如who(人), which(哪一个), whether(是否), what(物), that(即), if(如果)去掉连接词,主从句都缺少句子成分。3.解题步骤把主从句分开来看分析

2020-06-17 09:36:26 441

原创 神奇英语语法系列(1)——定语从句

本系列共8个,分别从定语从句、名词性从句、状语从句、非谓语、情态动词、时态和强调句与主谓一致讲解英语的语法。此方法相较于日常学习,更注重于考试使用,尤其是选择题。1. 定语从句定义首先看定语从句的定义:一个句子跟在一个名词或代词(先行词)后进行修饰限定(对词句进行补充、修饰、限定,进而使原句内容更完整)。也就是起到和形容词一样的效果的从句。其中,定语从句的连接词可以是 who/whom, which, that, as, when, why, where 和whose。2. 连接词的选择那么该如何

2020-06-16 11:38:01 417

原创 latex进阶使用(二)关于图、表、参考文献和编码的相关问题
原力计划

在上一期讲解中,我们讲解了latex的一些基本使用方法,后来有同学反映,仍然有许多实际问题没能得到解决,因此本文则进一步讲解关于latex中图的处理方法。我们在论文中,经常少不了图片的插入。一般的,主要是用于说明的示例图和数据展示图。这时候,可能会遇到以下几个问题。1 图片模糊图片模糊都是由于使用的是屏幕截图的方式保存的图片,那么这张图的质量就完全取决于你的屏幕分辨率和图的大小。如果你的图特别小而你的屏幕分辨率又比较低,那么此时截图出来的图片肯定模糊。下面是我们获得数据展示图的途径。一般的初级同学,

2020-06-16 10:37:45 488

原创 话到嘴边不会说,反向词典帮你找到那个最准确的表达!
原力计划

当我们在进行中文写作或者是英文写作的时候,我们都会遇到这样的一个问题,那就是我们想要描述一件事情时,由于词汇的缺乏我们很难描述的特别准确。这就相当于,我们拥有值,但是找不到键。这点在英文中尤为突出,可以用一个词解决的,非要使用一个从句进行描述,从而造成我们的论文的信息量由于篇幅的限制而大大减少。

2020-05-29 11:33:07 1036

原创 汇总!话题分割的语料库与常用方法,这里全都有!
原力计划

承接上一期描述的话题分割的任务定义和评估方法,在本文中,我们将去了解5个话题分割常用的语料库,以及4大类常用的话题分割的模型和方法,供大家学习和参考。

2020-05-28 12:31:26 853 2

原创 多重影分身之术!快来领取属于自己的个人智能助手!
原力计划

前言我们常常幻想着火影忍者里的影分身之术可以帮助我们同时多线程的处理日常事务。尽管在现实世界中,我们没有办法做到,但是在数字世界中,我们可以通过双手创建属于自己的个人智能助手!我们认为一个个人智能助手应当具备的目标:它可以在你不在的时候,帮助你处理一些简单而又重复的事物,就如同游戏脚本一般。但是,游戏脚本首先花钱,其次并不是为你量身定做,第三离开了游戏他什么也不是。而我们的个人智能助手则是在系统级别模拟你的存在,不仅可以帮助你进行游戏的自动化操作,而且可以处理除了游戏之外的事情。如果不观察客观世界你在

2020-05-27 21:59:13 850 1

原创 英文单词之说文解字(8)

我们中国人喜欢说话留三分,即使使用英语,也不想说的太直白,那么我们除了可以使用sort of, kind of 之外,还能使用什么方法呢?遇到又长又难的句子,我们该怎么处理?令人头疼的借贷,如何分的清它们?flg居然不是插图的意思?有意思。本文都会一一揭晓其答案。

2020-04-25 12:30:48 530

原创 英语单词之说文解字(7)

当我们说发挥想象时,是使用image还是imagine?我们常听到make sense,到底是啥意思呢?当我们将动词变为形容词时,-tive和-able的区别是什么?I doubt 和I suspect都是猜疑,有什么区别?答案都在此文中。

2020-04-18 21:24:46 731 5

原创 一文包揽文本分割(话题分割)的6种评估性能的方法,理论+样例+代码,看完还不会的来找我!
原力计划

在本文中,我们将会简要介绍文本分割任务,并介绍6种常用的性能评估指标,使用通俗易懂的例子进行一个直观的感受,并最后使用代码实现评估过程,让你看完本文,就可以进行文本分割任务的评估了。如果看完理论+样例+代码还是不会的话,直接私聊我!

2020-04-09 20:48:26 1194 4

原创 这些常见的单词,你真的理解它们么?不要给单词加戏太多!
原力计划

如果女神称呼你为Dear... 你是应该高兴还是应该伤心?The romance of three kingdoms 是三个国王的“爱情”故事么?sympathy,empathy哪一个才是真正的可怜?survive 真的只是幸存吗?看完本文,你就会找到答案!

2020-04-08 15:42:47 419

原创 真正的秘笈!授人鱼不如授人渔,如何用pytorch编写一个完美又不失自由的数据准备、模型构建、训练、评估、测试流程?看完本文大呼过瘾!
原力计划

前言之前的教程中,有同学要求将讲解的代码开源,以方便使用。本文将会用最精简的框架去介绍来自顶级公司的pytorch模型的整个框架及流程,并整理开源为通用的模型框架,供研究使用。(如果你还没有阅读过之前的基础知识,建议通过传送门大概了解一下。)代码连接本文的模型框架主要来源于谷歌的BERT开源代码、大名鼎鼎的Huggingface、AllenNlp以及Albert中文版等,通读完这些代码,你会...

2020-04-07 21:58:20 383

原创 如何优雅的学习英语?从理解英语的使用思维开始!

小朋友,你是否有很多问号?为什么sofa 和沙发这么像? 到底是先有的stone还是先有的石头?描述不可数的东西还是只会用a piece of 么? 现在再给你 a piece of chocolate ,你还会觉得满意吗?还是想要a bar of chocolate?我们从最简单的词语讲起,利用熟词记生词,使用词根词缀,扩展词汇量更加简单!

2020-04-02 11:13:13 379

原创 不需要死记硬背,看一遍就能记住单词的意思,一起了解单词背后的有趣故事(6)

单词很难背,这里我也深深认同,但是只需要了解单词背后的故事,我们对于单词就能够理解,而不是简单的映射。在本章中,我们将会解释以下有趣的问题:1. 如不同的职业为什么有`or/er/ee`等不同的结尾呢?2. 为啥像`com`会有`co-`,`col-`,`con-`,`cor`,`coun-`等这么多变体呢?3. 就算是同一个`re`的前缀,为什么又会有那么多不同的含义呢?4. 为什么`not only...but also` 是就近原则,`as well as` 就要是就远原则?5. 为什么`

2020-03-19 15:55:01 662

原创 我们为什么要用枚举类?从产品经理的角度,手把手带你走进enum的神奇世界
原力计划

不使用枚举类的阶段枚举类在初学者看来是一个相当鸡肋的类。首先,在我们进行选择、比较的时候,我们更喜欢直接赋值变量,以int或者string类型的最多,比如当我们定义一个学生类的性别的时候,我们更喜欢使用male 或者female来进行赋值。class student: def __init__(self): self.gender="male" # or female ...或者...

2020-03-17 11:54:33 397

原创 将自己的工作过程人工智能化,我真的做错了吗?

人工智能再一次又火了。今年新发布的研究生扩招再一次将专业着眼于在这次抗“疫”中的英雄们:医学专业,以及最近一直谈论的人工智能专业。那么人工智能真的这么有用么?这个问题已经讨论了3-4年了,中间有很多说法,也伴随着研究,落地了很多,但是仍然有很多更加深层的问题,我们亟待解决。在头条上,我看到了一个讨论帖,说的是一位程序员将自己的工作自动化了,然而他不敢告诉老板,每当发放薪水的时候,他又总觉得内疚,...

2020-03-12 10:27:10 321 1

原创 “有意思”的英语单词(5)

学习单词很枯燥么?其实,英语单词都是有意思的,我们学习英语单词也可以很有意思。如果我们能够理解单词内在的含义,就像我们学习说文解字一般,那么学习单词就会好很多了。本文我们共学习120个单词。1. 数字前缀(2)上篇文章我们主要讲解了0-6的数字前缀,这节我们讲完剩下的数字前缀。sept-七:septwolf为七匹狼oct-八:octopus八爪鱼nov-九:novena 连续九天的祷告...

2020-03-09 16:33:13 830

原创 词汇课程——词的颜色与易混淆的词缀(4)

文章目录1.回顾2. 褒义词和贬义词(以胖瘦为例)2.1 胖的2.2匀称的2.2 瘦的3. 形容词兄弟4. but的双重否定5. 新词构词法6. 容易混淆的形容词和副词7. 同音不同义8 数字前缀接下来,我们将要继续学习大约130个单词,一起来吧!1.回顾在之前的一讲中,我们主要学习了以义项为基础的多义词解释问题,事实上,多义词都是以核心的意思为基础,在不同的上下文中的不同解读而已。下面我们...

2020-03-02 20:26:09 733

空空如也

刘炫320的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除