HDU 4193 Non-negative Partial Sums 【单调队列】

题目链接

题意

给一串长度为n的数列,问数列中存在多少个元素,使得以这个元素为首的长度为(1,2,…,n)的连续子序列都大于0(如果子序列超出了原数列,则又从第一个元素开始)?

分析

首先这种涉及循环同构的题,通常还是把整个数组复制一遍接到原数组后面这样处理。考虑数据量,n在1e6,估计 O()n2) 级别的就会炸掉。考虑题目中需要大量求区间和,仍然用转化区间和为前缀和的套路进行处理。接下来如果直接暴力枚举判断的话,必定会TLE。于是分析,这个题带有一定的滚动区间的意味,便设法分析能不能转化为单调队列来处理。

于是我们做这样的转化:
设第i个元素的前缀和为 Ai ,i与j间的区间和为 Di,j ,那么有

Dk,k+1,Dk,k+2,...,Dk,k+n0max(Ak+1,Ak+2,...,Ak+n)Ak

那么这样已处理过后, 全部区间和大于0就转化为了求出当前首元素开头的所有前缀的最大值,这个最大值大于这个元素的前缀和就行了。接下来求这个元素开头的所有前缀和的最大值是典型的滚动区间问题,用单调队列或者线段树解决即可。

AC代码

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <set>
#include <string>
#include <map>
#include <queue>
#include <deque>
#include <list>
#include <sstream>
#include <stack>
using namespace std;

#define cls(x) memset(x,0,sizeof x)
#define inf(x) memset(x,0x3f,sizeof x)
#define neg(x) memset(x,-1,sizeof x)
#define ninf(x) memset(x,0xc0,sizeof x)
#define st0(x) memset(x,false,sizeof x)
#define st1(x) memset(x,true,sizeof x)
#define INF 0x3f3f3f3f
#define lowbit(x) x&(-x)
#define bug cout<<"here"<<endl;
//#define debug

deque<pair<long long,int> > auto_que;
long long sum[2000100];

void auto_insert(long long v,int x)
{
    while(!auto_que.empty()&&auto_que.back().first>=v)
        auto_que.pop_back();
    auto_que.push_back(make_pair(v,x));
    return;
}

long long getfront(int x,int k)
{
    while(auto_que.front().second<=x-k)
        auto_que.pop_front();
    return auto_que.front().first;
}

int main()
{
    #ifdef debug
        freopen("E:\\Documents\\code\\input.txt","r",stdin);
        freopen("E:\\Documents\\code\\output.txt","w",stdout);
    #endif
    int n;
    while(scanf("%d",&n)&&n)
    {
        auto_que.clear();
        long long tem=0;
        int temp=0;
        sum[0]=0;
        for(int i=1;i<=n;++i)
        {
            scanf("%d",&temp);
            tem+=temp;
            sum[i+n]=temp;
            sum[i]=tem;
            auto_insert(tem,i);
        }
        for(int i=n+1;i<=2*n;++i)
        {
            tem+=sum[i];
            sum[i]=tem;
        }
        int res=0;
        for(int i=n+1;i<=2*n;++i)
        {
            auto_insert(sum[i],i);
            if(getfront(i,n)>=sum[i-n])
                ++res;
        }
        cout<<res<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值