题意
给n个互不相包含的区间,求出一个长度的最大值,使得可以在每个区间中选出这样一个长度的子区间,这些子区间互不相交。结果用分数表示
分析
先考虑如果给定了区间长度能不能选出这样的区间。因为题中说了区间互不包含,所以可以直接把所有区间先按左端点排序再按右端点排序,每个区间都尽量取靠近左端点的子区间。(如果没有说区间不相互包含的话,就要维护优先队列)
然后用二分可以求出这个最大长度。这个题卡精度,精度要到1e-9才能过,所以对浮点数二分时候最好直接规定二分次数,不要设EXP,就可以规避卡精度的问题。
最后是用分数表示结果。最开始想的是直接在二分的时候就直接对分母进行二分,但这样显然是不正确的,也得不到正确结果。对用分数表示结果的问题一般直接枚举分母,因为原区间的长度都是整数,最极端的情况就是1/区间数量,所以从1到n枚举分母,然后乘以二分出来的结果算出分子。同样这里要处理精度问题(算出来的分数化成小数再与二分出来的结果进行比较),结果就是误差最小的分数。
(疑问:为什么算分子是要四舍五入或者用天花板函数?p=round(mid*q)
p=celi(mid*q)
)
AC代码
//UVA 1616 Caravan Robbers
//AC 2016-8-1 09:31:14
//Greedy, Binary Search, Enumeration
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <set>
#include <string>
#include <map>
#include <queue>
#include <deque>
#include <list>
#include <sstream>
#include <stack>
using namespace std;
#define cls(x) memset(x,0,sizeof x)
#define inf(x) memset(x,0x3f,sizeof x)
#define neg(x) memset(x,-1,sizeof x)
#define ninf(x) memset(x,0xc0,sizeof x)
#define st0(x) memset(x,false,sizeof x)
#define st1(x) memset(x,true,sizeof x)
#define INF 0x3f3f3f3f
#define lowbit(x) x&(-x)
#define bug cout<<"here"<<endl;
//#define debug
int n;
int gcd(int a,int b)
{
if(b==0)
return a;
return gcd(b,a%b);
}
struct interval
{
long double l,r;
bool operator< (const interval &rhs) const
{
if(l==rhs.l)
return r<rhs.r;
return l<rhs.l;
}
}inters[100010];
bool valid(long double x)
{
long double cur=0;
for(int i=0;i<n;++i)
{
cur=max(cur,inters[i].l);
cur+=x;
if(cur>inters[i].r)
return false;
}
return true;
}
int main()
{
#ifdef debug
freopen("E:\\Documents\\code\\input.txt","r",stdin);
freopen("E:\\Documents\\code\\output.txt","w",stdout);
#endif
while(cin>>n)
{
for(int i=0;i<n;++i)
cin>>inters[i].l>>inters[i].r;
sort(inters,inters+n);
long double a=0,b=1000010,mid;
for(int i=0;i<100;++i)
{
mid=(a+b)/2;
if(valid(mid))a=mid;
else b=mid;
}
int p,q=1,fp=100100,fq=1;
for(q=1;q<=n;++q)
{
p=round(mid*q);
if(fabs((long double)p/q-mid)<fabs((long double)fp/fq-mid))
{
fp=p;
fq=q;
}
}
int g=gcd(max(fp,fq),min(fp,fq));
cout<<fp/g<<"/"<<fq/g<<endl;
}
return 0;
}