LightOJ 1021 Painful Bases 【状压DP+数位DP】

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/DrCarl/article/details/52121705

题目链接

题意

求由一些B进制的数的全排列中能被K整除的数的个数

分析

题中B最高达到16,直接枚举排列显然不可能。考虑数位DP,但同时取得每个数要不同,所以需要记录用过哪些数,因此要用到状压DP

状态

dp[S][r]{S}Kr

转移方程

dp[S][r]=a{S}dp[S{a}][r]

其中 (r+a×Bt1%k)%k=r (t为S中元素个数)

另外注意base的幂要预处理,不然会T

AC代码

//LightOJ 1021 Painful Bases
//AC 2016-08-04 15:02:54
//DP
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <set>
#include <string>
#include <map>
#include <queue>
#include <deque>
#include <list>
#include <sstream>
#include <stack>
using namespace std;

#define cls(x) memset(x,0,sizeof x)
#define inf(x) memset(x,0x3f,sizeof x)
#define neg(x) memset(x,-1,sizeof x)
#define ninf(x) memset(x,0xc0,sizeof x)
#define st0(x) memset(x,false,sizeof x)
#define st1(x) memset(x,true,sizeof x)
#define INF 0x3f3f3f3f
#define lowbit(x) x&(-x)
#define input(x) scanf("%d",&(x))
#define bug cout<<"here"<<endl;
//#define debug

unsigned long long dp[(1<<17)][30];
char org[20];
int num[20];
int T,B,K;

int Pow(int x,int y)
{
    int res=1;
    for(int i=0;i<y;++i)
        res=(res%K*x%K)%K;
    return res%K;
}
int pows[20];

int main()
{
    #ifdef debug
        freopen("E:\\Documents\\code\\input.txt","r",stdin);
        freopen("E:\\Documents\\code\\output.txt","w",stdout);
    #endif
    input(T);
    for(int kase=1;kase<=T;++kase)
    {
        input(B);input(K);
        scanf("%s",org);
        int len=strlen(org);
        for(int i=0;i<len;++i)
        {
            if(isdigit(org[i]))
                num[i]=org[i]-'0';
            else
                num[i]=org[i]-'A'+10;
        }
        cls(dp);
        dp[0][0]=1;
        for(int i=0;i<=len;++i)
            pows[i]=Pow(B,i);
        for(int i=0;i<(1<<len)-1;++i)
        {
            int t=0;
            for(int j=0;j<len;++j)
                if((i>>j)&1) ++t;
            for(int j=0;j<len;++j)
            {
                if((i>>j)&1) continue;
                for(int r=0;r<K;++r)
                {
                    int r1=((r+(num[j]%K)*pows[t])%K)%K;
                    dp[i|(1<<j)][r1]+=dp[i][r];
                }
            }
        }
        printf("Case %d: ",kase);
        cout<<dp[(1<<len)-1][0]<<endl;
    }
    return 0;
}
阅读更多
想对作者说点什么?
相关热词

博主推荐

换一批

没有更多推荐了,返回首页