USTC 任课教师:李厚强,周文罡
我做回忆版试题的原因就是自己在备考的时候没有学长们的往年题参考,心里没底。希望看到这篇blog的学弟学妹们发扬精神,继续回忆考题造福以后的同学。
Q&A:问答, C:计算, A:算法, D:推导
2017-2018学年上学期期末试题
- 连通悖论
- Marr算子,Canny算子
- 灰度共生矩阵 纹理
- 给模板和图像,求腐蚀、开启
- 给模板求距离变换、Chamfer Distance
- 链码及消除影响因素
- (1)SIFT不变性 (2)灰度变换( f(x)=255−x )后的描述子变化
- 光流方程推导,多义性
- 水平集流程、优势,演化方程推导,变分法
复习
- 连通悖论 3p184 Q&A
4邻域和8邻域,4连通和8连通。同时有两种邻域的定义和两种连通性导致了对连通的歧义性,这称为连通悖论。
内4边8,内8外4 图像恢复和增强的异同
- 同:都能改善输入图像的视觉质量
- 异:增强一般仅借助人类视觉系统的特性以取得看起来较好的视觉结果;恢复则要根据相应退化模型和知识重建或恢复原始的图像。
2D距离变换 3p19
找最近距离边缘检测算子 Q&A 3p33
基本计算步骤,不变性(不考计算)- 拉普拉斯算子
∇2f=∂2f∂x2+∂2f∂y2
模板中心像素的系数是正的,中心邻近的为负,所有系数和为零。 - Marr算子 先平滑再拉普拉斯
(1)用一个2D的高斯平滑图像卷积
(2)计算卷积后图像的拉普拉斯值
(3)检测拉普拉斯图像中的过零点作为边缘点 - Canny算子
i. 高斯滤波器平滑图像,减轻噪声
ii. 检测滤波图像中灰度梯度的大小和方向(可用索贝尔算子)
iii. 非极大抑制。细化借助梯度检测得到的边缘像素所构成的边界
iv. 双阈值检测和连接。选两个阈值使用滞后阈值化方法。先标记梯度大于高阈值的边缘像素,再对与这些像素相连的像素使用低阈值(认为梯度大于低阈值、且与大于高阈值像素邻接的像素也是边缘像素)
- 拉普拉斯算子
k-means 3p48
写步骤,计算复杂度,乘积聚类。- 步骤
(1)选择K个初始分类中心 { u1,...,uk}
(2)使用最小距离法将所有样本分类
若 ∀j≠i,Dist(x−ui)<Dist(x−uj) ,则将x分为第i类
(3)根据第2步的分类结果,重新计算各类中心,并将此作为各类新的中心
(4)反复进行2、3步,直到各类中心趋于稳定 - 复杂度
∼O(NKD) 、 ∼O(ND)
n为数据集中数据样本数量,k为聚类个数,d为数据的维数。
- 步骤
水平集 D
基本思想:利用曲线在图像不同梯度的位置的运动速率不同,实现曲线的演化,进而实现图像分割- 变分法推导
Hough变换 直角坐标,极坐标3p80
- 基本原理
通过在参数空间中进行简单的累加统计完成检测 点线的对偶性
图像空间中共线的点 ⟺ 参数空间里相交的线
参数空间中交于一点的直线
- 基本原理