CSP 2019Day2T2 划分
这道题我当时在考场毫无思路。
先来看看部分分吧(标算咕咕咕
- 36pts,n <= 400
看起来大概像一个
O
(
n
3
)
O(n_{}^{3})
O(n3)的DP,那设状态
f
[
i
]
[
j
]
f[i][j]
f[i][j]表示,处理完前
i
i
i位,最后一段为
[
j
+
1
,
i
]
[j + 1,i]
[j+1,i]的最小代价。转移方程:
f
[
i
]
[
j
]
=
m
i
n
(
f
[
i
]
[
j
]
,
f
[
j
]
[
k
]
)
(
∑
k
j
a
<
=
∑
j
+
1
i
a
)
f[i][j] = min(f[i][j],f[j][k])(\sum_{k}^{j}a <= \sum_{j + 1}^{i}a)
f[i][j]=min(f[i][j],f[j][k])(k∑ja<=j+1∑ia)
需要枚举
i
,
j
,
k
i,j,k
i,j,k,判断一下合不合法。
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <set>
#include <vector>
#include <cstring>
#include <cctype>
#include <map>
#define ll long long
#define rep(a,b,c) for(int a = b;a <= c;++a)
#define per(a,b,c) for(int a = b;a >= c;--a)
#define N 5010
using namespace std;
int n,t;
int a[N];
ll sum[N];
ll f[N][N];//当前位置,段的起点
int last[N];
ll pf(ll x){
return x * x;
}
int main(){
scanf("%d %d",&n,&t);
rep(i,1,n)scanf("%d",a + i),sum[i] = sum[i - 1] + a[i];
memset(f,0x3f3f3f3f3f,sizeof(f));
f[0][0] = 0;
rep(i,1,n)rep(j,1,i)rep(k,0,j - 1){//i当前位置,j~i这段,k~j - 1这段
if(sum[i] - sum[j - 1] >= sum[j - 1] - sum[k - 1]){
f[i][j] = min(f[i][j],f[j - 1][k] + pf(sum[i] - sum[j - 1]));
}
}
ll ans = 0x3f3f3f3f3f;
rep(i,1,n)ans = min(ans,f[n][i]);
printf("%lld\n",ans);
return 0;
}
- 64pts,n <= 5000
这就需要把DP复杂度做到 O ( n 2 ) O(n_{}^{2}) O(n2),其实我们枚举 k k k的过程是在找一个符合条件的最小值,我们完全可以记下来这个最小值 k k k的位置,然后空间变为 O ( n ) O(n) O(n),时间变为 O ( n 2 ) O(n_{}^{2}) O(n2)。
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <set>
#include <vector>
#include <cstring>
#include <cctype>
#include <map>
#define ll long long
#define rep(a,b,c) for(int a = b;a <= c;++a)
#define per(a,b,c) for(int a = b;a >= c;--a)
#define N 5010
using namespace std;
int n,t;
int a[N];
ll sum[N];
ll f[N];//当前位置,段的起点
int last[N];//当前为i,上一个位置为last[i]=j ,此区间j + 1 ~i
ll pf(ll x){
return x * x;
}
int main(){
scanf("%d %d",&n,&t);
rep(i,1,n)scanf("%d",a + i),sum[i] = sum[i - 1] + a[i],f[i] = pf(sum[i]);//上一位置为0
rep(i,1,n)rep(j,1,i - 1){
if(sum[i] - sum[j] >= sum[j] - sum[last[j]]){
if(f[i] > f[j] + pf(sum[i] - sum[j])){
f[i] = f[j] + pf(sum[i] - sum[j]);
last[i] = j;
}
}
}
printf("%lld\n",f[n]);
return 0;
}
last数组的妙用。