CSP 2019Day2T2 划分部分题解

CSP 2019Day2T2 划分

这道题我当时在考场毫无思路。

先来看看部分分吧(标算咕咕咕

  • 36pts,n <= 400

看起来大概像一个 O ( n 3 ) O(n_{}^{3}) O(n3)的DP,那设状态 f [ i ] [ j ] f[i][j] f[i][j]表示,处理完前 i i i位,最后一段为 [ j + 1 , i ] [j + 1,i] [j+1,i]的最小代价。转移方程:
f [ i ] [ j ] = m i n ( f [ i ] [ j ] , f [ j ] [ k ] ) ( ∑ k j a < = ∑ j + 1 i a ) f[i][j] = min(f[i][j],f[j][k])(\sum_{k}^{j}a <= \sum_{j + 1}^{i}a) f[i][j]=min(f[i][j],f[j][k])(kja<=j+1ia)
需要枚举 i , j , k i,j,k i,j,k,判断一下合不合法。

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <set>
#include <vector>
#include <cstring>
#include <cctype>
#include <map>
#define ll long long
#define rep(a,b,c) for(int a = b;a <= c;++a)
#define per(a,b,c) for(int a = b;a >= c;--a)
#define N 5010

using namespace std;

int n,t;
int a[N];
ll sum[N];
ll f[N][N];//当前位置,段的起点 
int last[N];

ll pf(ll x){
	return x * x;
}

int main(){
	scanf("%d %d",&n,&t);
	rep(i,1,n)scanf("%d",a + i),sum[i] = sum[i - 1] + a[i];
	memset(f,0x3f3f3f3f3f,sizeof(f));
	f[0][0] = 0;
	rep(i,1,n)rep(j,1,i)rep(k,0,j - 1){//i当前位置,j~i这段,k~j - 1这段 
		if(sum[i] - sum[j - 1] >= sum[j - 1] - sum[k - 1]){
			f[i][j] = min(f[i][j],f[j - 1][k] + pf(sum[i] - sum[j - 1]));
		}
	}
	ll ans = 0x3f3f3f3f3f;
	rep(i,1,n)ans = min(ans,f[n][i]);
	printf("%lld\n",ans);
	return 0;
}
  • 64pts,n <= 5000

这就需要把DP复杂度做到 O ( n 2 ) O(n_{}^{2}) O(n2),其实我们枚举 k k k的过程是在找一个符合条件的最小值,我们完全可以记下来这个最小值 k k k的位置,然后空间变为 O ( n ) O(n) O(n),时间变为 O ( n 2 ) O(n_{}^{2}) O(n2)

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <set>
#include <vector>
#include <cstring>
#include <cctype>
#include <map>
#define ll long long
#define rep(a,b,c) for(int a = b;a <= c;++a)
#define per(a,b,c) for(int a = b;a >= c;--a)
#define N 5010

using namespace std;

int n,t;
int a[N];
ll sum[N];
ll f[N];//当前位置,段的起点 
int last[N];//当前为i,上一个位置为last[i]=j ,此区间j + 1 ~i 

ll pf(ll x){
	return x * x;
}

int main(){
	scanf("%d %d",&n,&t);
	rep(i,1,n)scanf("%d",a + i),sum[i] = sum[i - 1] + a[i],f[i] = pf(sum[i]);//上一位置为0 
	rep(i,1,n)rep(j,1,i - 1){
		if(sum[i] - sum[j] >= sum[j] - sum[last[j]]){
			if(f[i] > f[j] + pf(sum[i] - sum[j])){
				f[i] = f[j] + pf(sum[i] - sum[j]);
				last[i] = j;
			}
		}	
	} 
	printf("%lld\n",f[n]);
	return 0;
}

last数组的妙用。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值